
Equivalent Mutants in the Wild: Identifying and E�iciently
Suppressing Equivalent Mutants for Java Programs

Benjamin Kushigian
University of Washington

Seattle, USA

benku@cs.washington.edu

Samuel J. Kaufman
University of Washington

Seattle, USA

kaufmans@cs.washington.edu

Ryan Featherman
University of Washington

Seattle, USA

feathr@cs.washington.edu

Hannah Potter
University of Washington

Seattle, USA

hkpotter@cs.washington.edu

Ardi Madadi
University of Washington

Seattle, USA

ardier@cs.washington.edu

René Just
University of Washington

Seattle, USA

rjust@cs.washington.edu

Abstract

The presence of equivalent mutants has long been considered a

major obstacle to the widespread adoption of mutation analysis

and mutation testing. This paper presents a study on the types and

prevalence of equivalent mutants in real-world Java programs. We

conducted a ground-truth analysis of 1,992 mutants, sampled from

7 open source Java projects. Our analysis identi�ed 215 equivalent

mutants, which we grouped based on two criteria that describe why

the mutants are equivalent and how challenging their detection is.

From this analysis, we observed that (1) the median equivalent mu-

tant rate across the 7 projects is 2.97%; (2) many equivalent mutants

are caused by common programming patterns and their detection

is not much more complex than structural pattern matching over

an abstract syntax tree.

Based on the �ndings of our ground-truth analysis, we developed

Equivalent Mutant Suppression (EMS), a technique that comprises

10 e�cient and targeted analyses. We evaluated EMS on 19 open-

source Java projects, comparing the e�ectiveness and e�ciency of

EMS to two variants of Trivial Compiler Equivalence (TCE), the

current state of the art in equivalent mutant detection. Additionally,

we analyzed all 9,047 equivalent mutants reported by any tool to

better understand the types and frequencies of equivalent mutants

found. Overall, EMS detects 8,776 equivalent mutants within 325

seconds; TCE detects 2,124 equivalent mutants in 2,938 hours.

CCS Concepts

• Software and its engineering→ Software testing and debug-

ging.

Keywords

Mutation Testing, Equivalent Mutants, Static Analysis

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ISSTA ’24, September 16–20, 2024, Vienna, Austria

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0612-7/24/09
https://doi.org/10.1145/3650212.3680310

ACM Reference Format:

Benjamin Kushigian, Samuel J. Kaufman, Ryan Featherman, Hannah Potter,

Ardi Madadi, and René Just. 2024. Equivalent Mutants in the Wild: Identify-

ing and E�ciently Suppressing Equivalent Mutants for Java Programs. In

Proceedings of the 33rd ACM SIGSOFT International Symposium on Software

Testing andAnalysis (ISSTA ’24), September 16–20, 2024, Vienna, Austria.ACM,

New York, NY, USA, 12 pages. https://doi.org/10.1145/3650212.3680310

1 Introduction

Mutation analysis measures a test suite’s ability to detect system-

atically seeded arti�cial faults called (program) mutants. Mutation

testing builds on top of mutation analysis by presenting undetected

mutants as test goals to a developer. However, some mutants are

equivalent—semantically identical to the original program and thus

cannot be detected by any test. Equivalent mutants are problem-

atic for both mutation analysis and mutation testing. For mutation

analysis, equivalent mutants skew adequacy measures and waste

computational resources. For mutation testing, equivalent mutants,

when presented as (unsatis�able) test goals, waste developer time.

Despite a large body of work on equivalent mutant detection ap-

proaches (e.g., [3, 18, 21, 24, 26]), systematic studies on interactions

between speci�c mutation operators and the program contexts

that lead to their equivalence are missing. This paper closes this

gap by investigating how prevalent equivalent mutants are and

how challenging their detection is. Additionally, based on a �nding

that many equivalent mutants can be detected with e�cient static

analyses, this paper proposes and evaluates Equivalent Mutant Sup-

pression (EMS), a technique that suppresses equivalent mutants at

generation time. The evaluation compares EMS to two variants of

Kintis et al.’s Trivial Compiler Equivalence (TCE) [18], which is the

state of the art for Java programs.

This paper investigates the following research questions for the

Java programming language:

RQ1 How common are equivalent mutants in the wild?

RQ2 What types of equivalent mutants exist in the wild?

We answer RQ1 and RQ2 with a systematic ground-truth analysis

of 1,992 mutants across 7 Java projects (Section 4). Our qualitative

analysis of 215 equivalent mutants provides concrete examples and

a classi�cation based on two dimensions, measuring why a mutant

is equivalent and the reasoning power needed to detect it.

RQ3 How e�ective is EMS compared to TCE?

RQ4 What types of equivalent mutants do EMS and TCE �nd?

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

654

https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://orcid.org/0009-0009-2504-1582
https://orcid.org/0000-0003-4337-5577
https://orcid.org/0009-0006-0303-6668
https://orcid.org/0000-0002-8502-1657
https://orcid.org/0000-0001-9258-4872
https://orcid.org/0000-0002-5982-275X
https://doi.org/10.1145/3650212.3680310
https://doi.org/10.1145/3650212.3680310

ISSTA ’24, September 16–20, 2024, Vienna, Austria Benjamin Kushigian, Samuel J. Kaufman, Ryan Featherman, Hannah Po�er, Ardi Madadi, and René Just

RQ5 How e�cient is EMS compared to TCE?

We implement EMS on top of the Major mutation framework (Sec-

tion 5) and answer RQ3–5 by evaluating EMS and TCE on 1,193,633

mutants from 19 Java projects (Section 6).

This paper’s key results are:

RA1 We estimate that the median per-project equivalent mutant

rate is 2.97% across mutants generated by Major.

RA2 We found that many equivalent mutants are simple: only

30% of mutants require reasoning about state propagation

to determine equivalence and only 24% require reasoning

about the heap (e.g., alias analysis). These simple equivalent

mutants can be detected with e�cient static analyses.

RA3 EMS detects about 29% of equivalent mutants, compared to

3.3% and 5.1% for TCE90E02 and TCEB>>C , respectively. EMS’

e�ectiveness is comparable across all projects.

RA4 EMS’ e�cacy stems primarily from its ability to reason about

value ranges, common patterns in equals methods, and Java

Standard Library API contracts. The majority of equivalent

mutants missed by EMS but detected by TCEB>>C were mu-

tations of values which are never read.

RA5 EMS detects an equivalent mutant every 0.52 seconds on av-

erage, whereas TCEB>>C detects an equivalent mutant every

4,980 seconds on average.

2 Background and Related Work

Both mutation analysis and mutation testing begin by generating

mutants, which are syntactic variations of the original program.

Usually, these variations are small, such as changing a single +

operator to a - operator. Given a set of tests, a mutant is classi�ed

as killed if a test passes on the original program but fails on the

mutant; otherwise, the mutant is classi�ed as live.

Mutation analysis evaluates a test suite according to its ability

to kill mutants. The result of mutation analysis is a test adequacy

measure. Empirical evidence shows that, although mutants are syn-

tactically simpler than real faults [8], mutant detection is positively

correlated with real fault detection [2, 5, 13].

Mutation testing is a testing work�ow that presents live mutants

to a developer as test goals [1, 16]. Each live mutant represents a

potential weakness in the test suite, and presenting them to develop-

ers can elicit stronger tests than coverage-guided or ad hoc testing

alone. Mutation testing sees increasing adoption in industry, and

recent research has shown that mutation testing leads to developers

writing more and stronger tests [4, 28, 30].

2.1 Mutant Generation

Traditional mutant generators apply a set of pre-de�ned mutation

operators, which are syntactic transformation rules, to the original

program to generate a set of mutants. For Java programs, these

mutation operators are commonly applied to a program’s AST or

to its compiled bytecode [1, 6, 15, 22].

More recently, researchers have started using machine-learning-

based mutation, with two distinct approaches: (1) learning mutation

operators o�ine (e.g., to mimic real-world faults) and then apply-

ing those operators to generate mutants [4, 17], and (2) mutating

programs directly by passing them to a (language) model [7, 34].

2.2 Equivalent Mutants

For amutant to be killable, a test’s executionmust reach themutated

code, infect (change) the program state, and propagate the infected

state to an output observable by the test [11, 36]. An equivalent

mutant is a mutant which cannot be killed by any test: it is infeasible

to create a test that satis�es all three conditions.

Equivalent mutants are problematic for both mutation analysis

and mutation testing. In mutation analysis, they waste computa-

tional resources (running tests in an attempt to kill equivalent

mutants is futile) and skew the mutant detection rate. In mutation

testing, they wastes developer time by presenting them with unsat-

is�able test goals. Prior work suggests that non-trivial equivalent

mutants can lead developers to refactor or otherwise improve their

code [30, 31], but many equivalent mutants are trivial.

2.3 Impact of Equivalent Mutants on Testing

Prior work estimates that the time to analyze a single equivalent

mutant (and to identify it as such) ranges from 5 to 15 minutes [9,

31, 32]. Additionally, developers have a low tolerance for false

positives [10, 28, 33]; presenting an equivalent mutant as a test

goal is e�ectively a false positive, and thus may lead to a lack

of adoption of mutation testing in practice. Finally, even though

equivalent mutants typically make up a small proportion of all

generated mutants, they make up an outsized proportion of the

mutants presented to developers. Even a weak initial test suite

can kill a large number of generated mutants1. For example, if 5%

of generated mutants are equivalent and a test suite kills 80% of

generated mutants, 25% of the remaining mutants are equivalent.

Prior work also investigated to what extent traditional mutation

operators generate equivalent vs. desirable mutants [14, 37]. For

example, Yao et al. report on a manual analysis of 1,230 equivalent

and stubborn mutants. Stubborn mutants are non-equivalent mu-

tants that remain undetected by a test suite, and are desirable since

they indicate shortcomings in the existing test suite. Yao et al.’s

results suggest that for some operators generating stubborn mu-

tants is correlated with generating equivalent mutants. The study

provides valuable insights into the prevalence and distribution of

equivalent mutants across di�erent classes of mutation operators,

and it demonstrates a fundamental trade-o� (see Section 7.3).

Our work extends Yao et al.’s study by investigating the interac-

tions between speci�c mutation operators and the context in which

they are applied that lead to equivalent mutants.

2.4 Equivalent Mutant Detection Techniques

To mitigate the problems caused by equivalent mutants, prior work

has proposed techniques for detecting equivalent mutants [3, 18,

21, 23, 25, 27]. Baldwin [3] proposed six di�erent compiler opti-

mizations as heuristics to detect equivalent mutants but did not

implement a detection system. O�utt and Craft [25] built the Equal-

izer, an equivalent mutant detection system for Fortan 77, using

these six compiler optimizations, and reported a 10% equivalent

mutant detection rate (EMDR). Papadakis et al. [27] introduced TCE,

using an optimizing compiler (GCC) to detect equivalent mutants

in C programs (EMDR=7.4%). Kintis et al. [18] extended TCE to

1Kurtz et al. [19] showed that simulated test completeness of as low as 20% can result
in a mutation score of 80% or higher

655

Equivalent Mutants in the Wild: Identifying and E�iciently Suppressing Equivalent Mutants for Java Programs ISSTA ’24, September 16–20, 2024, Vienna, Austria

Table 1: Subject programs and number of generated mutants.

Subject Loc Retained Total Generated code Uncomp.

Classes Mutants Classes Mutants Classes Mutants Mutants

Ant 104,270 685 102,478 685 104,670 0 0 2,192

Bcel 30,258 327 30,221 327 30,694 0 0 473

Chart 96,382 528 120,273 528 121,394 0 0 1,121

Cli 7,070 20 2,874 20 2,888 0 0 14

Codec 7,953 54 24,669 54 24,809 0 0 140

Collections 28,543 263 22,999 263 23,259 0 0 260

Compress 41,838 175 42,570 175 43,178 0 0 608

Csv 1,635 9 2,133 9 2,163 0 0 30

Gson 7,886 41 8,893 42 9,515 0 0 622

H2 140,255 612 182,074 612 184,260 0 0 2,186

JacksonCore 26,004 88 48,808 88 49,141 0 0 333

JacksonDatabind 61,107 356 49,104 356 49,577 0 0 473

JacksonXml 4,927 29 4,198 29 4,247 0 0 49

Jsoup 12,008 57 15,125 57 15,277 0 0 152

JxPath 18,764 136 14,328 143 25,077 7 10,528 221

Lang 21,788 97 38,855 97 39,492 0 0 637

Math 84,324 581 200,147 581 204,506 0 0 4,359

Time 27,801 131 34,935 131 35,255 0 0 320

Tomcat 244,582 1,297 248,949 1,354 268,613 57 16,984 2,680

Total 967,395 5,486 1,193,633 5,551 1,238,015 64 27,512 16,870

Java by using the non-optimizing javac compiler along with the

Soot framework [35] to act as an optimization pass (EMDR=5.7%).

The di�erence in EMDR between the Equalizer and TCE is likely

due to di�erences in both language and mutation operator set. For

instance, the Equalizer evaluation used the ABS mutation operator,

which replaces an expression 4 with absolute value |4 | and negative

absolute value −|4 |. The ABS operator produces many equivalent

mutants (e.g., when an expression is always positive valued), and

modernmutation systems do not implement this operator [6, 15, 29].

Similarly, the AOIS operator used in [18] produces a large number

of equivalent mutants; we discuss this in depth in Section 7.

TCE represents the state of the art for general equivalent mutant

detection in Java programs; other techniques (e.g., solver-based

approaches [21, 23]) do not scale to full programs or support only

a subset of the Java programming language. TCE leverages the

fact that two programs with identical bytecode are equivalent: it

compares the compiled bytecode of mutants to that of the original

program. TCE is appealing due to its simplicity, requiring only a

compiler and diff, but its e�ectiveness depends on the degree to

which the compiler canonicalizes the program during optimization.

3 Data Set

We answer our research questions with a data set of 1,193,633

mutants, generated from 19 open-source Java projects. We refer to

this data set as the Full Data Set.

3.1 Subject Selection

Table 1 summarizes the 19 open-source Java projects (15 from the

Defects4J benchmark [12] (v2.0.1) and 4 independent projects) that

we selected for analysis based on the following criteria:

(1) Diversity: We selected projects with di�erent character-

istics such as project domain, project size, and developer

community, to improve generalizability of our results.

(2) Comparability: We included all projects used by Kintis et

al. [18] to enable comparability with prior work.

(3) Ease of building: We selected projects that allow us to

automatically build, mutate, and analyze them.

We chose to use Defects4J because it is a widely used benchmark,

it simpli�es reproducibility of our results, and it enables project

mutation using the Major mutation framework through a uni�ed

interface. Defects4j provides 17 open source Java projects. (Major

did not generate mutants for 2/17 projects, which we discarded.)

For each of the remaining 15 Defects4J projects, we mutated and

analyzed the most recent version available in Defects4J.

Additionally, we chose 4 standalone projects: Apache Tomcat,

a webserver application; Apache Ant, a build system for Java; H2,

an SQL database engine; and Apache Bcel, a bytecode engineering

library. These projects increase diversity and ensure that our data

set properly contains the projects used by Kintis et al. Note that

the exact project versions and the set of generated mutants di�er

due to our use of a more recent Java version (Java 8) and the Major

mutation framework (Kintis et al. used muJava).

3.2 Mutant Generation

TCE requires source code mutants (as opposed to mutants directly

embedded into bytecode). Based on a recent survey of mutation

testing tools for Java [1], we chose Major because of its ability to

generate source-code mutants and its recency (muJava was not

applicable to our data set). We used the most recent version (v2.0.0)

of the Major mutation framework [15] for mutant generation and

enabled all available mutation operators.

We excluded 64 source �les that were automatically generated

(e.g., by a parser generator), as well as any mutants derived from

those source �les. The types of equivalent mutants in generated

code may not be representative of those found in developer-written

code, and generated code is usually not tested/mutated directly in

practice. This excluded about 2.22% of all generated mutants. (Note

that when considering mutants in generated code, our conclusions

about tool e�cacy still hold.)

Major produced between 2,163 and 268,613 mutants per project,

for a total of 1,238,015 mutants. Out of all mutants in non-generated

code, 1.36% did not compile—these are also excluded from the total

in Table 1. One class in Gson did not have any compilable mutants,

and is thus excluded from the count of retained classes. Overall,

our Full Data Set contains 1,193,633 retained mutants.

4 Equivalent Mutants in the Wild

This section answers RQ1 and RQ2, reporting on our systematic

ground-truth analysis that estimates the equivalent mutant rate

(EMR) for Java programs and characterizes the found equivalent

mutants. Speci�cally, we selected 7 of the 19 projects in our data

set for this ground-truth analysis based on the following criteria:

• Representative sample: The sampled projects should con-

tribute about 33% of all generated mutants.

• Diversity of projects: The sampled projects should exhibit

diversity across domain, coverage/kill rates, and size.

• Ease of Testing: The sampled projects’ testing infrastruc-

ture should allow for automated mutation analysis.

656

ISSTA ’24, September 16–20, 2024, Vienna, Austria Benjamin Kushigian, Samuel J. Kaufman, Ryan Featherman, Hannah Po�er, Ardi Madadi, and René Just

Not Equivalent Equivalent

Covered+Killed Covered+Live

Uncovered

Figure 1: Strati�ed sampling for estimating EMR. The shaded

region represents the unknown set of equivalent mutants.

The equivalent mutant rate (EMR) of each strata is the per-

centage of its shaded area (0% for killed mutants). Strati�-

cation reduces sample variance, and thus the sample size

required to estimate the overall EMR.

4.1 RQ1: How common are equivalent mutants
in the wild?

We manually determined the equivalence for 1,992 mutants, ran-

domly sampled based on an optimal sampling allocation, and used

this data to estimate the EMR for each project.

4.1.1 Methodology. Our goal is to estimate the EMR for each of

our 7 sampled projects with 95% con�dence and a 2.5% margin of

error per project. To estimate EMR, we sample a su�cient number

of mutants from each project and manually inspect them.

Mutant sampling To meet our goals for statistical con�dence

and margin of error, we minimized the number of manual inspec-

tions required via strati�ed sampling and using information from

automated mutation analyses. This section lays out the general

sampling procedure and reports on the sample composition. Our

supplementary material2 provides an extended statistical analysis

of the sampling procedure as well as scripts for reproducibility.

Reducing the sample variance allows us to reach a given con�-

dence interval with fewer samples. We used data collected from

running the projects’ test suites on the generated mutants to reduce

sample variance. This allowed us to divide the mutant population

into three strata, as shown in Figure 1: Uncovered—mutants in

code not covered by any tests; Covered+Killed—mutants in cov-

ered code that are killed; Covered+Live—mutants in covered code

that are live. We assume that Uncovered and Covered have a sim-

ilar EMR, which we empirically validated. Killing non-equivalent

mutants with tests grows the Covered+Killed strata, whose EMR

is known to be 0%. Conversely, it shrinks the Covered+Live strata,

thereby increasing its EMR (equivalent mutants cannot be killed,

and hence remain in that strata). Since the three strata have di�erent

EMRs, sampling uniformly at random is suboptimal.

Mutant equivalence To manually inspect each sampled mutant

for equivalence, we assigned each project to one of four coders

(some coders were assigned more than one project). For each sam-

pled mutant, a coder determined whether it was equivalent. Since

there is some ambiguity around what constitutes an equivalent

2https://www.doi.org/10.6084/m9.�gshare.26948143.v1

Table 2: Estimated percentage of equivalent mutants (EMR

%) and estimated number of equivalent mutants (Eq.) per

subject. Mutation analysis and Sampled summarize the data

that underlies these estimations.

Subject Mutants Estimation Mutation analysis Sampled

EMR % Eq. Killed Live All Cov. Uncov.

Cov. Uncov. N Eq. N Eq. N Eq.

Chart 120,273 2.97 3,571 33,738 30,860 55,675 429 20 186 16 243 4

Collect. 22,999 1.84 423 14,775 4,453 3,771 360 20 216 18 144 2

Csv 2,133 2.54 54 1,613 347 173 292 31 207 25 85 6

Gson 8,893 5.24 466 6,141 1,764 988 343 70 285 67 58 3

JxPath 14,328 3.07 440 8,981 2,969 2,378 242 21 146 18 96 3

Lang 38,855 3.69 1,435 31,059 6,797 999 251 44 203 41 48 3

Math 200,147 2.97 5,946 153,023 32,403 14,721 75 9 46 7 29 2

mutant, we needed to establish a precise de�nition. For instance, is

a mutant equivalent if it produces the same value but takes 10x time

to run? Is a mutant equivalent if re�ection is required to detect it

(e.g., directly accessing a private method)? As an extreme example,

a test could inspect every runtime state in the underlying JVM and

detect any state infections. In practice, a test should assert on a

program’s behavior, not its syntactic representation on disk or tran-

sient states in the JVM, and the de�nition of an equivalent mutant

(infeasible test goal) should be aligned with this expectation. We

chose the following de�nition:

A mutant is equivalent if no test can be written that distinguishes the

mutant from the original program by only invoking and inspecting

data obtained from the public and package-private API of the program.

In particular, this disallows re�ection and timing-based tests, though

it does allow access to protected �elds through subclassing.

Coders inspected the sampled mutants for equivalence, and la-

beled each based on the above de�nition. We allowed for uncer-

tainty in the labeling process: programs are complex, and some

mutants required reasoning over complex control �ow, class invari-

ants, and sophisticated mathematical properties with little to no

documentation. To handle this uncertainty, coders marked mutants

that they were not certain about, and resolved ambiguities through

discussion. About 2% of all sampled mutants required additional dis-

cussion. Overall, the labeling process took over 160 hours, with an

average of 5 minutes per mutant, ranging from less than a minute

(e.g., very similar mutants) to over one hour for a single mutant.

The time-consuming nature of the labeling task reinforces the need

for optimal sampling allocation.

4.1.2 Results. Overall, 215 out of 1,992 mutants are labeled as

equivalent in the ground-truth dataset. Table 2 shows the EMR esti-

mates for each project as well as the underlying sample composition

(Sampled). Collections has the lowest EMR at 1.84% while Gson

has the highest EMR at 5.24%. The median EMR is 2.97%. Section 6

uses the ground-truth dataset and the EMR estimates to contex-

tualize the e�cacy of the evaluated equivalent-mutant detection

approaches. Section 7 discusses the reasons for the relatively low

observed EMR, compared to prior work, including the impact of

mutation operators and redundant mutants.

657

https://www.doi.org/10.6084/m9.figshare.26948143.v1

Equivalent Mutants in the Wild: Identifying and E�iciently Suppressing Equivalent Mutants for Java Programs ISSTA ’24, September 16–20, 2024, Vienna, Austria

4.2 RQ2: What types of equivalent mutants
exist in the wild?

Having established a ground-truth dataset of 215 equivalent mu-

tants, we wished to understand why these mutants are equivalent

and how a detection approach could determine equivalence.

4.2.1 Methodology. Coders tagged each equivalent mutant accord-

ing to two criteria, RIP and ASH.

The RIP Criterion. The RIP criterion describes why a mutant is

equivalent. For a mutant to be non-equivalent, the following three

properties must hold:

• R: The mutated code is reachable.

• I: Executing mutated code infects execution state.

• P: The infected state propagates to an observable output.

Any equivalent mutant violates at least one of these, and we labeled

them according to the weakest property violated (R < I < P).

The ASH Criterion. The ASH criterion describes how a tool

could detect a mutant’s equivalence, broken down by the degree of

required reasoning complexity.

• A: A tool would need to reason over information available

in an attributed Abstract Syntax Tree.

• S: A tool would need to reason about data�ow across Local

State (e.g., intra-procedural data�ow analysis).

• H: A tool would need to reason about the Heap (e.g., perform

an alias analysis, reason about class invariants, etc.).

The delineation between ASH, and between S and H in particular,

is not always clear. For instance, a (boxed) Integer is technically a

heap object, but it is immutable and reasoning about such objects

is very similar to reasoning about primitives; ArrayList.size() has

an (implicit) contract that the result is non-negative; a static getter

method may return a literal or �nal value. While the above exam-

ples technically involve a heapy operation, their semantics can be

simpli�ed via method summaries or inlining. When di�erentiating

between S and H, we assumed that a technique belonging to S has

access to method summaries and inlining. This separates the com-

plexity of reasoning about a program that is factored over several

methods (but can be simpli�ed), and the complexity of reasoning

about arbitrary class invariants.

When labeling equivalent mutants according to the ASH reason-

ing power required to detect the equivalence, we assume that all

levels of reasoning have access to the following information:

(a) Constant Folding and Propagation: Statically known

(compile-time) constant value for a variable (e.g., int seconds

= 60 * 60;). Inlining of constants (e.g., the constant value of

final int ONE = 1; is known for all uses of ONE).

(b) Method Contracts: We assume that implicit and explicit

method contracts provided by the standard library (e.g.,

Collection.size() >= 0 ↦→ true) are available to all forms

of reasoning.

This means that a mutant is labeled A if no other information is

required to determine equivalence.

Patterns of Equivalent Mutants. While manually inspecting

for mutant equivalence and labeling according to the RIP-ASH

criteria, coders noted common patterns of equivalent mutants. For

instance, coders noticed that many equivalent mutants were formed

A S H

R
I

P

0

5

10

15

0

5

10

15

0

5

10

15

N
u
m

b
e
r

o
f
e
q
u
iv

a
le

n
t
m

u
ta

n
ts

Subject Chart Collections Csv Gson JxPath Lang Math

Figure 2: Number of equivalent mutants found in the ground-

truth analysis, divided by the RIP-ASH criteria.

when a variable declaration’s initialization value was mutated but

never read before the variable was reassigned:

int foo = 1;

if (c) {foo = 2;}

else {foo = 3;}

We used the labeled data to determine the distribution of equivalent

mutants according to RIP-ASH and compile concrete examples.

4.2.2 Results. Figure 2 summarizes the labeling results. The re-

mainder of this section details each of the types of equivalent mu-

tants that we identi�ed during our analysis.

• RAmutants are unreachable and can be detected by inspecting

the AST. For example, DEBUG is false and the then branch is

unreachable.

final boolean DEBUG = false;

if (DEBUG) {

- double hGap = 1.0;

+ double hGap = 0.0;

...

}

• IAmutants fail to infect state and can be detected by inspecting

the AST. The following mutant replaces a �nal variable with

its constant value. Executing the mutant fails to infect state,

making it equivalent. We can discover this by inspecting the

value associated with PEEKED in the AST.

final int PEEKED = 0;

...

- int peeked = PEEKED;

+ int peeked = 0;

• PAmutants fail to propagate infected state and can be detected

by inspecting the AST. The following mutant of the .equals()

doesn’t return true when this == other, and the method

continues executing.When this == other then the rest of the

.equals() method should return true, and the infected state

will not propagate. We discover this by inspecting the AST:

we need to know that the name of the method is .equals, that

it takes parameter other, that there is a reference equality

check between this and other that returns true on success3.

3Proving that removing the reference equality check is sound would involve more
sophisticated analyses. However, this pattern occurs frequently, is based on an implicit
contract of the .equals method, and is unlikely to be a source of false positives. This
is the only source of potential unsoundness in our labeling scheme (see Section 7).

658

ISSTA ’24, September 16–20, 2024, Vienna, Austria Benjamin Kushigian, Samuel J. Kaufman, Ryan Featherman, Hannah Po�er, Ardi Madadi, and René Just

public boolean equals(Object other) {

if (this == other) {

- return true;

+ ;

• IS mutants fail to infect state and can be detected with a local

data�ow analysis. The following mutant replaces != with <.

These operators are equivalent so long as the LHS is less

than or equal to the RHS. strLen is non-negative (since it is

a length), and when start is initialized to 0 it is less than or

equal to strLen. We can perform a data�ow analysis of the

loop to discover that start is only incremented by 1 and that

strLen is never altered updated. From this we can conclude

that the loop will terminate before the invariant start <=

strLen fails to hold, and the mutant is equivalent.

int strLen = str.length ();

int start = 0;

- while (start != strLen && ...) {

+ while (start < strLen && ...) {

start ++;

}

• PSmutants fail to propagate infected state and can be detected

with a local data�ow analysis. The following code initializes

code to a dummy value, but overwrites the dummy value

before it is ever used. Themutant infects state but never prop-

agates. We can learn this by performing a def-use analysis

of the code variable.

- int code = 0;

+ int code = 1;

code = hash();

• IH mutants fail to infect state and heap/alias analysis is re-

quired to detect it. The following mutant is equivalent due

to a class invariant in which the value this.lexer is always

non-null. To discover this we would need to reason about

complex class invariants involving heap state.

- if (this.lexer != null) {

+ if (true) {

• PH mutants fail to propagate infected state and require a

heap/alias analysis to be detected. This mutant alters execu-

tion path (infects) when len == b.length(). When len ==

b.length(), the original code calls b.setLength(len), which

will not alter state, and the infection never propagates. To

discover this we need to reason about heap state to discover

that b.setLength(len) is a no-op.

void trimTrailingSpaces(final StringBuilder b) {

int len = b.length ();

while (len > 0 && ..) {

len = len - 1;

}

- if (len != b.length ()) {

+ if (len <= b.length ()) {

b.setLength(len);

}

}

Our �ndings by the RIP criteria We found that very few (2%)

mutants were equivalent due to being unreachable (R). The most

(67%) equivalent mutants were equivalent due to a failure to infect

execution state (I). The second most common (31%) reason for

equivalence was a failure to propagate infected execution state to

an observable output (P).

Our �ndings by the ASH criteria The A and S tags were most

common in our sample, making up 32% and 43% of all tagged mu-

tants. The H tag was the least common, making up only 25% of all

tagged mutants. Many of these came from the Gson project due to

a large number of class invariants.

These are promising �ndings: these numbers suggest that many

equivalent mutants can be detected with e�cient analyses.

5 EMS: Equivalent Mutant Suppression

Our manual analysis revealed that many equivalent mutants can be

detected with a small set of analyses not much more complex than

structural pattern matching over an AST, attributed with types and

constant values. For example, many implementations of the equals

method begin with a reference-equality check:

boolean equals(Object other) {

if (this == other) { return true; }

// ...

}

Matching the above AST, assuming no logic errors in the remainder

of the method implementation, is su�cient to determine that the

following two mutants are equivalent to the original program:

M1: if (false) { return true; }

M2: if (this == other) { /* deleted */; }

Listing 1: Equivalent mutants, disabling a reference-equality

optimization.

We augmented the Major mutation framework with a set of 10

lightweight suppression rules to investigate whether they could e�-

ciently detect a substantial fraction of observed equivalent mutants.

We developed these rules by generalizing from observed equivalent

mutants to mutants which are equivalent for the same underlying

reason. These rules were designed after manual analysis of only

7 of the 19 projects but are e�ective for all 19 projects, o�ering

evidence that our rule design does not over�t to the smaller cor-

pus: Section 6 shows that these rules suppress a large fraction of

equivalent mutants across projects.

We group our suppression rules according to RIP-ASH.

RA

(1) Unreachable. EMS suppresses three types of unreachable

code: branches that are conditionally compiled (e.g., if (false)

{. . . }), default cases of switch statements on enum values

where all possible values are checked (and no fall-throughs to

the default case are possible), and do-while loops where the

condition is never reached because the body always returns

or breaks.

IA

(2) Standard Library Contracts. EMS suppresses comparison

operand mutations between > and != and between == and <=

when the mutated expression is a comparison between 0 an

array’s length �eld or the return value a standard Java collec-

tion’s length() or size()method. Similarly, EMS suppresses

mutations for comparisons of −1 with a String’s indexOf or

lastIndexOf member.

659

Equivalent Mutants in the Wild: Identifying and E�iciently Suppressing Equivalent Mutants for Java Programs ISSTA ’24, September 16–20, 2024, Vienna, Austria

(3) Useless Control Flow.Mutants that remove super�uous

control-�ow statements, including return; as the last state-

ment in a void method, break; as the last statement in a

switch, and continue; as the last statement in a loop body.

(4) Mutate Constant Value. EMS suppresses mutations to

constant-valued expressions which yield the same constant

value. Examples include mutating an arithmetic subexpres-

sion that is multiplied by 0 and replacing a �nal �eld with

its statically known value (e.g., mutating ZERO to 0). EMS en-

sures no side-e�ect-changing mutants are suppressed (e.g.,

mutating 0*sideEffect() to 0*1 will not be suppressed).

(5) Algebraic Identity. EMS suppresses mutants that are equiv-

alent due to an algebraic identity. For example, mutating x*1

to x/1, x+0 to x-0, 32>>x to 32>>>x, or x != Integer.MIN_VALUE

to x > Integer.MIN_VALUE are all suppressed. Identities are

identi�ed by matching types and literals only; this suppres-

sion rule does not otherwise reason about values.

IS

(6) Mutually Exclusive. Expressions a || b and a != b opera-

tors are equivalent whenever both a and b cannot both be

true. Likewise, a && b and a == b are equivalent when both

a and b cannot both be false. EMS suppresses mutations be-

tween || and != (resp. && and ==) when it can determine that

the operands cannot both be true (resp. false) The simplest

form of this suppression rule is the comparison of single

variable to constant values: a == 1 || a == 2: both compar-

isons cannot be true, so EMS suppresses mutating || to !=.

A more complicated example is checking if char c is a valid

digit: c < ’0’ || c > ’9’. EMS uses a range analysis to infer

that c cannot both be less than ’0’ and greater than ’9’ and

suppresses the mutation of || to !=.

(7) Loop-Bounds Check. Mutating the termination condition

from i < X to i != X, in a for loop of the form for (int i =

0; i < X; i++), yields an equivalent mutant if i is always

less than nor equal to X. EMS suppresses such mutations

when it can soundly determine that i is guaranteed to be less

than or equal to X : i is initialized to 0 or a negative value, i

is monotonically increasing by 1, X is a constant or of the

form x.{size()|length}, and neither i nor X are updated in

the loop body.

PA

(8) equals() Reference Equality. EMS suppresses mutants

that disable an optimization in equals (Listing 1).

(9) Empty Branches. EMS suppresses mutants to if conditions

when both branches are empty, so long as EMS can prove

that the condition is side-e�ect free.

PS

(10) Useless Inititalization. EMS suppresses the mutation of

unread initializations of local variables, which is de�ned to

be an initialization of a variable to a value that is never read

before being reassigned:

// foo's init value 0 is never read

int foo = 0;

if (c) { foo = 1; }

else {foo = 2;}

Tomcat

Time

Math

Lang

JxPath

Jsoup

JacksonXml

JacksonDatabind

JacksonCore

H2

Gson

Csv

Compress

Collections

Codec

Cli

Chart

Bcel

Ant

0% 2% 4%

Est. Total EMS TCE_soot TCE_javac

Figure 3: Ratio of equivalent mutants found by each tool,

compared to the estimated equivalent mutant ratio.

This is common in practice, and often related to style choices.

EMS builds on top of Javac’s de�nite assignment analysis4.

If a local variable is de�nitely assigned after deleting its

initializer, EMS suppresses mutations to that initializer.

6 Evaluation

To evaluate EMS, we consider how many and which types of equiv-

alent mutants it detects compared to TCE, the current state of the

art. We also contrast EMS’ e�ciency with that of TCE.

For our baseline, we use two variants of TCE: TCE90E02 and

TCEB>>C . The original TCE implementation5 was written in Jython

2.x, built to target the output structure generated by muJava6, and

not easy to parallelize/decouple. Based on the speci�cation in the

original paper and the available code, we reimplemented both TCE

variants in Python 3 and Bash.

The mutant compilation phase, which is identical for both vari-

ants, runs javac on the individual source code mutants. For e�-

ciency, this step compiles only the mutated Java �le. This leads to

one or more compiled class�les (inner and anonymous classes are

compiled to their own class �les).

TCEB>>C then runs Soot on each class�le, acting as the optimiza-

tion phase of compilation, in order to discover equivalences between

programs that normal javac compilation would not discover.

Finally, the equivalence analysis compares mutated bytecode to

the original bytecode for equality.

6.1 RQ3: How e�ective is EMS compared to
TCE?

6.1.1 Methodology. To answer RQ3, we compare EMS to the two

TCE variants in terms of number of equivalent mutants detected.

Having established ground truth for 1,992 equivalent mutants,

we computed the recall for all tools (ratio of detected equivalent

mutants over the total number of equivalent mutants) for that

4https://docs.oracle.com/javase/specs/jls/se8/html/jls-16.html
5The published link (https://bitbucket.org/marinosk/ted) is broken, but we were able
to locate TCE on GitHub: https://github.com/kintism/ted.
6https://cs.gmu.edu/~o�utt/mujava/

660

https://docs.oracle.com/javase/specs/jls/se8/html/jls-16.html
https://bitbucket.org/marinosk/ted
https://github.com/kintism/ted
https://cs.gmu.edu/~offutt/mujava/

ISSTA ’24, September 16–20, 2024, Vienna, Austria Benjamin Kushigian, Samuel J. Kaufman, Ryan Featherman, Hannah Po�er, Ardi Madadi, and René Just

Table 3: Equivalent mutants found on ground-truth data set.

Subject Mutants TCE90E02 TCEB>>C EMS

N % N % N %

Chart 20 1 5.00 2 10.00 6 30.00

Collections 20 0 0.00 1 5.00 7 35.00

Csv 31 1 3.23 1 3.23 13 41.94

Gson 70 2 2.86 2 2.86 12 17.14

JxPath 21 1 4.76 2 9.52 11 52.38

Lang 44 0 0.00 1 2.27 11 25.00

Math 9 2 22.22 2 22.22 3 33.33

Total 215 7 3.26 11 5.12 63 29.30

Ground Truth Data Set. We quantify each tool’s e�ectiveness as

the number and ratio of equivalent mutants found by that tool.

Additionally, we determined the total number of equivalent mu-

tants found by each tool for the Full Data Set. We use the estimated

equivalent mutant rates from the Ground Truth Data Set as a refer-

ence point to estimate the tools’ recall on the full data set.

6.1.2 Results. Table 3 gives the results for recall on the Ground

Truth Data Set. Overall, EMS detects about 29% of the equivalent

mutants, compared to 3.3% and 5.1% for TCE90E02 and TCEB>>C ,

respectively. Table 4 and Figure 3 quantify each tool’s e�ectiveness

on the Full Data Set. EMS detected 8,776 equivalent mutants, com-

pared to 1,007 and 2,124 for the two TCE variants. Overall, EMS’

e�ectiveness is comparable across all 19 subjects, and it consistently

outperforms TCE by a wide margin. EMS detected every equivalent

mutant also detected by TCE90E02 , but it misses 271 equivalent

mutants detected by TCEB>>C .

Soot Nondeterminism While testing our implementation we

found that TCEB>>C is nondeterministic: it detected slightly di�er-

ent sets of equivalent mutants across di�erent runs. This is due

to nondeterminism in Soot: the same input class�le can result in

di�erent output class�les. Since TCEB>>C compares the bytecode

generated by Soot for equality, this can produce a false negative.

We performed two analyses to determine the impact of this non-

determinism on our measurements of TCEB>>C ’s e�ectiveness. (1)

We modeled a TCEB>>C run on an equivalent mutant as a Bernoulli

RV and showed that in the worst case, we can be 95% con�dent that

the number of reported equivalent mutants of a single campaign of

TCEB>>C across all mutants would be within 2.2% of the expected

number of reported equivalent mutants. (2) We compared the num-

ber of equivalent mutants detected in the reported run of TCEB>>C
with the number detected in a previous run. The two runs reported

a di�erent set of equivalent mutants, but the number of reported

equivalent mutants between runs di�ered only by 1. This suggests

that Soot’s nondeterminism should lead to a negligible variation in

TCEB>>C ’s equivalent mutant detection rate given our sample size.

6.2 RQ4: What types of equivalent mutants do
EMS and TCE �nd?

6.2.1 Methodology. To better understand what types of equivalent

mutants EMS and the TCE baselines detect, we manually analyzed

all of the 2,124 equivalent mutants detected by TCEB>>C on the Full

Data Set, which includes all 1,007mutants detected by TCE90E02 .We

Table 4: Number of equivalent mutants found per subject.

Subject Mutants Equivalent mutants found

EMS TCE90E02 TCEB>>C

Ant 102,478 1,127 25 176

Bcel 30,221 242 22 30

Chart 120,273 1,117 91 339

Cli 2,874 29 0 0

Codec 24,669 94 7 22

Collections 22,999 150 1 7

Compress 42,570 194 12 81

Csv 2,133 19 1 1

Gson 8,893 68 15 15

H2 182,074 1,203 321 389

JacksonCore 48,808 290 15 23

JacksonDatabind 49,104 306 41 62

JacksonXml 4,198 25 1 6

Jsoup 15,125 118 8 14

JxPath 14,328 181 7 9

Lang 38,855 399 9 84

Math 200,147 1,230 311 557

Time 34,935 225 15 19

Tomcat 248,949 1,759 105 290

Total 1,193,633 8,776 1,007 2,124

Tomcat

Time

Math

Lang

JxPath

Jsoup

JacksonXml

JacksonDatabind

JacksonCore

H2

Gson

Csv

Compress

Collections

Codec

Cli

Chart

Bcel

Ant

0.00 0.25 0.50 0.75 1.00

EMS Both TCE_soot

Figure 4: Proportion of equivalent mutants found per tool.

Table 5: Number of equivalent mutants suppressed per rule.

Rule n

Standard Library Contracts 1,796

Loop-Bounds Check 1,562

Mutually Exclusive 1,488

equals() Reference Equality 1,078

Useless Inititalization 863

Mutate Constant Value 487

Algebraic Identity 484

Unreachable Code 460

Useless Control Flow 364

Empty Branches 194

Total 8,776

661

Equivalent Mutants in the Wild: Identifying and E�iciently Suppressing Equivalent Mutants for Java Programs ISSTA ’24, September 16–20, 2024, Vienna, Austria

Table 6: Tool e�ciency results for EMS and both TCE variants,

including total runtime across all analyzed mutants, and the

time per analyzed mutant (sec/Mut) and time per equivalent

mutant detected (sec/EquiMut).

Variant Mutants Runtime

Analyzed FoundEqui Total sec/Mut sec/EquiMut

EMS 1,193,633 8,776 1.26h 0.004 0.52

TCE90E02 1,193,633 1,007 1,549h 4.67 5,538

TCEB>>C 1,193,633 2,124 2,938h 8.86 4,980

additionally mapped EMS suppression rules to types of equivalent

mutants suppressed by these rules as well as their RIP-ASH labels,

and automatically labeled all 8,776 suppressed mutants.

6.2.2 Results. Table 5 shows the number of equivalent mutant

suppressions each rule in EMS is responsible for. Most notably, EMS’

e�cacy stems from its range analysis and reasoning about common

patterns in equals methods as well as API contracts de�ned by the

Java Standard Library.

In total, EMSmissed 271 equivalent mutants detected by TCEB>>C .

These can be broken down into three categories: mutants that

mutate values that are never read (222), mutants thatmutate constant

values to the same value (40), and mutants that mutate control �ow

in a way that does not change program semantics (9).

EMS does suppress equivalent mutants of each of these forms,

but it uses conservative rules, and some of these mutants take forms

that are not detected by these conservative rules. For instance, EMS

suppresses unread initialization values of variables, but detecting

more mutations to values that are written to local variables but

never accessed require a more sophisticated analysis.

6.3 RQ5: How e�cient is EMS compared to TCE?

6.3.1 Methodology. To answer RQ5, we measure the e�ciency

of EMS and the two TCE variants, considering two runtimes for

the Full Data Set. First, we consider the time it takes to generate

the mutants, compared to the default version of Major. For TCE,

runningMajor incurs an overhead because it must export individual

source-code mutants. For EMS, running Major incurs an overhead

because of enabled mutant suppression. Second, we consider, for

TCE, the time it takes to compile and di� the individual source-code

mutants. Since TCEB>>C is an extension of TCE90E02 , we determined

its total runtime by adding the additional runtime incurred by

running Soot to the runtime of TCE90E02 .

We ran both TCE variants and EMS on a Linux server with 104

CPUs and 1TB of RAM, and timed each process with the time utility.

We used a ramdisk to store all generated mutants and compiled

class�les to avoid I/O overhead. We restricted parallelization of

our analysis to 8 jobs at a time and monitored server workload

to ensure su�cient resources are available. Since multithreading

makes timing analyses di�cult, we report user time plus system

time for each process, as this is the total time spent in the process,

regardless of the number of threads.

6.3.2 Results. Generating mutants with suppression enabled in-

creases runtime from 1,172 to 1,369 seconds, incurring a 17% time

100

1000

10000

100000

1000000

Major EMS TCE_javac TCE_soot

T
o
ta

l
ru

n
ti
m

e

Major EMS TCE_javac TCE_soot

Figure 5: Distribution of total runtime for all subjects.

increase. Even with this increase, EMS’s mutant generation is al-

most twice as fast as that of TCE (2,369 secsonds).

TCE’s true overhead comes from individually compiling each

generated mutant. To put this overhead in perspective, we quantify

e�ciency in three ways: (1) total runtime, (2) runtime per mutant,

and (3) runtime per equivalent mutant detected.

Table 6 reports the e�ciency results. EMS’ total runtime was

1.26 hours, compared to 1,549 hours for TCE90E02 and 2,938 hours

for TCEB>>C . Additionally, Figure 5 shows the distribution of total

runtime per tool and subject.

7 Discussion

7.1 Time per Detected Equivalent Mutant

Having a low time per detected equivalent mutant is crucial for a

tool to be viable. Kintis et al.’s data implies that TCEB>>C found

an equivalent mutant on average every 25 seconds, while our ex-

periments suggest that TCEB>>C takes on average over an hour to

discover each equivalent mutant. This subsection attempts to re-

solve the discrepancy by investigating di�erences in the reported

e�ectiveness and e�ciency between Kintis et al.’s and our data.

7.1.1 Discrepancies in E�ectiveness. Our experiments showed that

TCE90E02 and TCEB>>C respectively reported 0.08% and 0.18% of

generated mutants as equivalent. These numbers are smaller than

those reported in prior work: Kintis et al. [18] reports that TCE

variants respectively found 0.2% and 5.7% of generated mutants to

be equivalent, and reported that TCEB>>C detected 54% of equivalent

mutants identi�ed during a ground-truth analysis.

This discrepancy is largely due to the presence of the AOIS op-

erator (not used in Major) in Kintis et al.’s data set, which accounts

for 3,770 / 3,904 (94.8%) of the equivalent mutants discovered by

TCEB>>C . AOIS replaces a variable a with one of the following:

++a, --a, a++, or a--. When this operator is applied to a variable

that is never read again (e.g., in return a++;), the infected state

cannot propagate, making the mutant equivalent. Detecting these

equivalent mutants involves reasoning about (simple) data�ow, and

TCEB>>C is particularly good at detecting this type of reasoning.

Table 14 of Kintis reports that the 3,770 equivalent mutants gener-

ated by AOIS represent 15% of the mutants total mutants generated

662

ISSTA ’24, September 16–20, 2024, Vienna, Austria Benjamin Kushigian, Samuel J. Kaufman, Ryan Featherman, Hannah Po�er, Ardi Madadi, and René Just

by AOIS, and from this we estimate that 25, 133 = 3770/0.15 mu-

tants in total were generated by AOIS, representing approximately

37% of the total generated mutants.

We estimate that removing the AOIS operator from the data set

would result in 134 (3,904 - 3,770) equivalent mutants detected, out

of 43,050 (68,183 - 25,133) generated mutants. This corresponds to

0.31% of generated mutants being detected equivalent by TCEB>>C ,

which is much closer to the 0.18% that we found in our analysis.

7.1.2 Discrepancies in E�iciency. In addition to di�erences in ef-

fectiveness, our e�ciency numbers do not align with what was

reported in [18]. While we were unable to explain this discrepancy,

we explicate our reproduction, which we believe accurately repre-

sents the e�ciency of the baseline tools, and summarize possible

explanations in the supplementary material.

7.2 Undetected Equivalent Mutants

Not all equivalent mutants are created equal: TCEB>>C is able to de-

tect mutants that require reasoning about complex data�ow. During

our manual inspection of mutants reported equivalent by TCEB>>C ,

we found equivalent mutants involving complex data�ow to be

some of the most challenging ones. It is entirely possible that these

would not have been detected by a manual analysis without a tool

reporting them equivalent, and the utility of �nding those equiva-

lent mutants is much higher than some simpler equivalent mutants.

While TCEB>>C may take longer per equivalent mutant discovered,

it also detects some more di�cult-to-�nd equivalent mutants.

7.3 A Fundamental Trade-o�

Mutation tools face a fundamental trade-o� between applying broad

mutations that are easier to detect but less likely to be equivalent

and applying narrow mutations that are harder to detect but also

more likely to be equivalent. Consider the condition a < b. Negating

this condition with an ROR mutation operator (a >= b) results

in a broad change to program semantics (no constraints on a or

b): a test covering this condition always alters program execution,

providing marginal value over code coverage. Conversely, mutating

the condition to a != b results in a narrow (subtle) di�erence in

program semantics: a test detecting this mutant must execute the

condition in a state where 0 > 1. While this is a desirable mutant

in general, it is equivalent in some contexts such as a for loop

condition (e.g., 8 > 10 is impossible in for(i=0;i<10;++i)).

Thus, narrow mutations produce stronger test goals at the cost

of more equivalent mutants while broad mutations produce fewer

equivalent mutants at the cost of weaker test goals.

This trade-o� is backed up by Yao et al.’s study of stubborn and

equivalent mutants [37]. For example, they found that the number

of equivalent and stubborn mutants produced by the ROR mutation

operators were highly correlated.

Many tools apply broader mutations, presumably to avoid equiv-

alent mutants. For instance, PIT does not produce the narrow muta-

tion a < b to a != b, but rather the broad mutation a < b to a >= b.

However, narrow mutations are desirable in most contexts and not

generating them at all results in a weaker mutant set. If we can pre-

cisely identify in what contexts they produce equivalent mutants,

we can get the bene�ts of narrow mutations without incurring the

cost of equivalent mutants.

Table 7: Generalizability of EMS rules.

Rule Major MuJava PIT FB iBiR `BERT

all def

Standard Library Contracts ✓ ✓ ✓ ✓ ✓

Loop-Bounds Check ✓ ✓ ✓ ✓ ✓

Mutually Exclusive ✓ ✓

equals() Reference Equality ✓ ✓ ✓ ✓ ✓ ✓*

Useless Inititalization ✓ ✓ ✓ ✓ ✓ ✓

Mutate Constant Value ✓ ✓ ✓ ✓ ✓

Algebraic Identity ✓ ✓ ✓ ✓ ✓ ✓

Unreachable Code ✓ ✓ ✓ ✓ ✓ ✓ ✓

Useless Control Flow ✓ ✓ ✓ ✓

Empty Branches ✓ ✓ ✓ ✓ ✓ ✓ ✓

✓*: Not veri�ed due to `BERT crashing on methods containing the instanceof keyword.

7.4 Generalizability of EMS

We implemented EMS for the Major mutation system, but inves-

tigated whether EMS generalizes to other mutant generators. We

considered two ways in which EMS can generalize:

(1) Rule generalizability (Section 7.4.1): the exact rules identi�ed

for Major generalize to other mutant generators.

(2) Approach generalizability (Section 7.4.2): new rules can detect

equivalent mutants produced by mutant generators other

than Major (i.e., equivalent mutants produced by other mu-

tant generators also exhibit clear patterns).

To determine rule and approach generalizability of EMS we

considered �ve other mutant generators, across three di�erent

types of mutant-generation approaches:

(1) Traditional. These generators apply traditional mutation op-

erators. We selected PIT [6] and MuJava [22] to represent

traditional mutant generation based on the �ndings of a

recent survey [1].

(2) Learned Operators. These systems apply learned mutation

operators. We considered FB (Facebook) [4] and iBiR [17].

(3) LM-Generated Mutants. These systems use language models

to mutate programs directly. We chose `BERT [7] to repre-

sent this approach. We also considered DeepMutation [34],

but ultimately discarded this tool because we were unable

to build and execute it.

For each representative tool, we read its documentation, reasoned

about the systems and, when possible, ran it on example code that

could lead to equivalent mutants. We used the results of the tools to

determine if the system would generate equivalent mutants. If we

could not run a tool (e.g., iBiR due to numerous build environment

issues and FB due to being proprietary), we resorted to the published

operator speci�cations when reasoning about whether an operator

could lead to predictable patterns of equivalent mutants.

7.4.1 Rule Generalizability. Table 7 summarizes our results: a check

indicates that a mutant generator produces an equivalent mutant

that the corresponding EMS rule would suppress. The table has two

columns for PIT and a single column for all other tools. By default

PIT uses a restricted set of mutation operators (def) as opposed to

all supported operators (all). As per Section 7.3, this avoids some

equivalent mutants at the cost of generating weaker mutants.

663

Equivalent Mutants in the Wild: Identifying and E�iciently Suppressing Equivalent Mutants for Java Programs ISSTA ’24, September 16–20, 2024, Vienna, Austria

All rules generalize to at least one other system. Only the Mutu-

ally Exclusive rule did not generalize to at least one non-traditional

mutant generator, which is a consequence of these generators not

applying certain narrow mutations. For instance, Major mutates

a && b to a == b, which di�ers from the original expression only

when ¬0 ∧ ¬1. Other mutant generators apply much broader mu-

tations such as replacing a && b with true (which di�ers whenever

¬0 ∨ ¬1). This again demonstrates the trade-o� of avoiding some

equivalent mutants at the cost of generating weaker mutants.

Useless Control Flow generalizes to all systems that can easily

implement this operator; `BERT only replaces a token with another

token, and thus cannot remove a break, continue, or return state-

ment; PIT operates on compiled bytecode where high-level control

�ow operations are implicit.

Other rules generalize to all or nearly all other mutators.

7.4.2 Approach Generalizability. All other mutant generators pro-

duce some mutants that Major does not. We inspected each genera-

tor’s mutation operators to determine if there are common patterns

of equivalent mutants that a new EMS rule could easily suppress.

The results below suggest that the EMS approach itself generalizes.

Traditional MuJava’s AOIS (inserting pre/post-�x incremen-

t/decrement operators) and ABS (replacing an expression with its

absolute value) operators both produce many equivalent mutants

that can be easily suppressed (e.g., do not insert a post�x operator to

a variable going out of scope). While PIT targets bytecode, most of

its mutation operators are the same as, or emulate, source-level mu-

tation operators. However, PIT also exhibits patterns of additional,

suppressible equivalent mutants. For instance, PIT deletes method

calls (Void Method Calls operator) by default, which can lead to

equivalent mutants when deleting statements that close streams or

�le handles in contexts where these are closed implicitly.

Learned Mutation Operators Both iBiR and FB can bene�t

from EMS. iBiR applies a Move Statements operator—moving a

statement to a di�erent position. Without additional constraints,

this leads to equivalent mutants whenever the statement order

does not matter, as is the case for swapped variable declarations or

assignments that do not exhibit a control dependency.

FB applies a REMOVE_NULL_CHECK operator, which removes null

checks of the form if (x == null) If this branch throws an

exception, the testable outcomewill often be equivalent to removing

the check and dereferencing a null pointer.

LM-Generated Mutants It is hard to reason about these sys-

tems because they use a black-box model to generate mutants,

and this may result in unpredictable behavior. However, we iden-

ti�ed several patterns of equivalent mutants produced by `BERT

after a cursory inspection of its mutant sets for several programs.

Here are two concrete examples: (1) Replacing c.indexOf(x) with

c.lastIndexOf(x) results in an equivalent mutant when used in

a contains operation (e.g., if (c.indexOf(x)>=0)). (2) Replacing a

&& b with a & b results in an equivalent mutant when used with

non-side-e�ecting expressions 0 and 1. A trivial extension of EMS’

Mutually Exclusive rule would detect these equivalent mutants.

7.5 Threats to Validity

7.5.1 External Validity. Software projects vary widely in coding

style and language features used. This can result in di�erences

among the number of detectable and undetectable equivalences

that are generated. Our results may only generalize to subjects that

share the characteristics of our subject pool. To combat this, we

sampled from a variety of subjects.

7.5.2 Internal Validity. Reasoning about some mutants was very

di�cult, and this leads to some uncertainty in our data. We mini-

mized this uncertainty by consulting with other authors.

Additionally, some rules rely onmethod implementations to obey

their API contracts. For example, equals() Reference Equality

assumes that an initial reference equality check in a class’ equals

method can be skipped without a�ecting the semantics (it is essen-

tially an optimization). It is possible that a valid implementation

of equals can exist that does not satisfy this assumption. Similarly,

suppression rules based on Standard Library Contracts can be

unsound: there is nothing that prevents a developer from imple-

menting, for example, a java.util.Collection with a size method

that returns negative values. In practice, we did not observe coun-

terexamples to our assumptions for either of these suppression

rules, and we believe that these are safe and valuable suppression

rules, even if they are technically unsound.

It is also possible that other forms of unsoundness (e.g., faulty

implementation) are in some of our rules. We have designed the

rules to be sound, but we have not attempted a formal proof of

correctness and soundness. To mitigate this, we have written ex-

tensive tests of what mutants should and should not be suppressed,

and we manually inspected most of the suppressed equivalent mu-

tants. Further, we manually checked all suppressed mutants in the

ground-truth dataset and found no false positives.

7.5.3 Construct Validity. We assume the value of detecting an

equivalent mutant is constant. We did not consider how di�er-

ent classes of equivalent mutants might be more valuable to detect

than others, for instance by virtue of requiring more e�ort to detect

manually or by being more likely to indicate a problem in code.

8 Conclusions

This paper reports on a manual ground-truth analysis of the types

of equivalent mutants that exist in the wild and how di�cult it is to

detect them. With an estimated median per-project equivalent mu-

tant rate of 2.97%, many equivalent mutants are caused by common

programming patterns and are detectable with e�cient static anal-

yses. We implemented EMS in the Major mutation framework and

evaluated it on 19 open source Java projects, comparing it to two

TCE variants as baselines. EMS detected 8,776 equivalent mutants

within 4,546 seconds, taking only 0.52 seconds per detected equiva-

lent mutant; TCE90E02 deteted 1,007 equivalent mutants in 1,549

hours, taking 5,538 seconds per equivalent mutant detected, and

TCEB>>C detected 2,124 equivalent mutants in 2,938 hours, taking

4,980 seconds per equivalent mutant detected.

Data-Availability Statement

We provide data �les and analysis scripts at: https://www.doi.org/10.

6084/m9.�gshare.26948143.v1 [20]. Defects4J andMajor are publicly

available, which supports full reproducibility.

Acknowledgements

This work is supported in part by National Science Foundation

grant CCF-1942055.

664

https://www.doi.org/10.6084/m9.figshare.26948143.v1
https://www.doi.org/10.6084/m9.figshare.26948143.v1

ISSTA ’24, September 16–20, 2024, Vienna, Austria Benjamin Kushigian, Samuel J. Kaufman, Ryan Featherman, Hannah Po�er, Ardi Madadi, and René Just

References
[1] Domenico Amal�tano, Ana C R Paiva, Alexis Inquel, Luís Pinto, Anna Rita

Fasolino, and René Just. 2022. How do Java mutation tools di�er? Commun. ACM
1, 1 (2022), 23.

[2] J.H. Andrews, L.C. Brand, and Y. Labiche. 2005. Is mutation an appropriate
tool for testing experiments?. In Proceedings. 27th International Conference on
Software Engineering, 2005. ICSE 2005. IEEe, St. Louis, MO, USA, 402–411. https:
//doi.org/10.1109/ICSE.2005.1553583

[3] Douglas Baldwin and Frederick Sayward. 1979. Heuristics for Determing
Equivalence of Program Mutations. (July 1979). https://apps.dtic.mil/sti/pdfs/
ADA071795.pdf

[4] Moritz Beller, Chu-PanWong, Johannes Bader, Andrew Scott, Mateusz Machalica,
Satish Chandra, and Erik Meijer. 2021. What It Would Take to Use Mutation
Testing in Industry—A Study at Facebook. In 2021 IEEE/ACM 43rd International
Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP).
268–277. https://doi.org/10.1109/ICSE-SEIP52600.2021.00036

[5] Yiqun T. Chen, Rahul Gopinath, Anita Tadakamalla, Michael D. Ernst, Reid
Holmes, Gordon Fraser, Paul Ammann, and René Just. 2020. Revisiting the
Relationship Between Fault Detection, Test Adequacy Criteria, and Test Set Size.
In Proceedings of the International Conference on Automated Software Engineering
(ASE).

[6] Henry Coles. 2024. Pitest: Real world mutation testing. https://pitest.org (last
accessed March 2024).

[7] Renzo Degiovanni and Mike Papadakis. 2022. µBert: Mutation Testing using
Pre-Trained Language Models. In 2022 IEEE International Conference on Software
Testing, Veri�cation and Validation Workshops (ICSTW). IEEE, Valencia, Spain,
160–169. https://doi.org/10.1109/ICSTW55395.2022.00039

[8] Rahul Gopinath, Carlos Jensen, and Alex Groce. 2014. Mutations: How Close
are they to Real Faults?. In 2014 IEEE 25th International Symposium on Software
Reliability Engineering. 189–200. https://doi.org/10.1109/ISSRE.2014.40 ISSN:
2332-6549.

[9] Bernhard J. M. Grün, David Schuler, and Andreas Zeller. 2009. The Impact of
Equivalent Mutants. In 2009 International Conference on Software Testing, Ver-
i�cation, and Validation Workshops. IEEE, Denver, CO, USA, 192–199. https:
//doi.org/10.1109/ICSTW.2009.37

[10] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bowdidge.
2013. Why don’t software developers use static analysis tools to �nd bugs?.
In 2013 35th International Conference on Software Engineering (ICSE). 672–681.
https://doi.org/10.1109/ICSE.2013.6606613 ISSN: 1558-1225.

[11] René Just, Michael D. Ernst, and Gordon Fraser. 2013. Using State Infection
Conditions to Detect Equivalent Mutants and Speed up Mutation Analysis.
arXiv:1303.2784 [cs.SE]

[12] René Just, Darioush Jalali, and Michael D. Ernst. 2014. Defects4J: A database of
existing faults to enable controlled testing studies for Java programs. In Proceed-
ings of the International Symposium on Software Testing and Analysis (ISSTA). San
Jose, CA, USA, 437–440.

[13] René Just, Darioush Jalali, Laura Inozemtseva, Michael D. Ernst, Reid Holmes,
and Gordon Fraser. 2014. Are mutants a valid substitute for real faults in software
testing?. In Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering - FSE 2014. ACM Press, Hong Kong, China,
654–665. https://doi.org/10.1145/2635868.2635929

[14] René Just, Bob Kurtz, and Paul Ammann. 2017. Inferring mutant utility from pro-
gram context. In Proceedings of the 26th ACM SIGSOFT International Symposium
on Software Testing and Analysis. 284–294.

[15] Rene Just, Franz Schweiggert, and Gregory M. Kapfhammer. 2011. MAJOR: An
e�cient and extensible tool for mutation analysis in a Java compiler. In 2011 26th
IEEE/ACM International Conference on Automated Software Engineering (ASE 2011).
IEEE, Lawrence, KS, USA, 612–615. https://doi.org/10.1109/ASE.2011.6100138

[16] Samuel J. Kaufman, Ryan Featherman, Justin Alvin, Bob Kurtz, Paul Ammann,
and René Just. 2022. Prioritizing mutants to guide mutation testing. In Proceedings
of the 44th International Conference on Software Engineering. ACM, Pittsburgh
Pennsylvania, 1743–1754. https://doi.org/10.1145/3510003.3510187

[17] Ahmed Khan�r, Anil Koyuncu, Mike Papadakis, Maxime Cordy, Tegawende F.
Bissyandé, Jacques Klein, and Yves Le Traon. 2023. iBiR: Bug-report-driven Fault
Injection. ACM Transactions on Software Engineering and Methodology 32, 2 (April
2023), 1–31. https://doi.org/10.1145/3542946

[18] Marinos Kintis, Mike Papadakis, Yue Jia, Nicos Malevris, Yves Le Traon, and
Mark Harman. 2018. Detecting Trivial Mutant Equivalences via Compiler Opti-
misations. IEEE Transactions on Software Engineering 44, 4 (April 2018), 308–333.
https://doi.org/10.1109/TSE.2017.2684805

[19] Bob Kurtz, Paul Ammann, Je� O�utt, and Mariet Kurtz. 2016. Are We There
Yet? How Redundant and Equivalent Mutants A�ect Determination of Test
Completeness. In 2016 IEEE Ninth International Conference on Software Testing,

Veri�cation and Validation Workshops (ICSTW). 142–151. https://doi.org/10.1109/
ICSTW.2016.41

[20] Benjamin Kushigian, Rene Just, and Samuel Kaufman. 2024. Supplementary
material for Equivalent Mutants in the Wild: Identifying and e�ciently suppressing
Equivalent Mutants for java programs. https://doi.org/10.6084/m9.�gshare.
26948143.v1

[21] Benjamin Kushigian, Amit Rawat, and Rene Just. 2019. Medusa: Mutant Equiva-
lence Detection Using Satis�ability Analysis. In 2019 IEEE International Conference
on Software Testing, Veri�cation and Validation Workshops (ICSTW). IEEE, Xi’an,
China, 77–82. https://doi.org/10.1109/ICSTW.2019.00035

[22] Yu-Seung Ma, Je� O�utt, and Yong-Rae Kwon. 2006. MuJava: a mutation system
for java. In Proceedings of the 28th international conference on Software engineering.
ACM, Shanghai China, 827–830. https://doi.org/10.1145/1134285.1134425

[23] Simona Nica and Franz Wotawa. 2012. Using Constraints for Equivalent Mutant
Detection. Electronic Proceedings in Theoretical Computer Science 86 (July 2012),
1–8. https://doi.org/10.4204/EPTCS.86.1 arXiv: 1207.2234.

[24] A. Je�erson O�utt. 1988. Automatic Test Data Generation. Ph. D. Dissertation.
Georgia Institute of Technology, Atlanta, GA.

[25] A. Je�erson O�utt and W. Michael Craft. 1994. Using compiler optimization tech-
niques to detect equivalent mutants. Software Testing, Veri�cation and Reliability
4, 3 (1994), 131–154.

[26] A. Je�erson O�utt and Jie Pan. 1994. Using Constraints to Detect Equiva-
lent Mutants. Ph. D. Dissertation. https://pdfs.semanticscholar.org/329d/
2f8107679740395bac2cc0525f83adf33a20.pdf?_ga=2.31610622.1559687992.
1581913553-1401888376.1581913553

[27] Mike Papadakis, Yue Jia, Mark Harman, and Yves Le Traon. 2015. Trivial Com-
piler Equivalence: A Large Scale Empirical Study of a Simple, Fast and E�ective
Equivalent Mutant Detection Technique. In 2015 IEEE/ACM 37th IEEE Interna-
tional Conference on Software Engineering, Vol. 1. 936–946. https://doi.org/10.
1109/ICSE.2015.103 ISSN: 1558-1225.

[28] Goran Petrovic, Marko Ivankovic, Gordon Fraser, and Rene Just. 2021. Does
Mutation Testing Improve Testing Practices?. In 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE). IEEE, Madrid, ES, 910–921. https:
//doi.org/10.1109/ICSE43902.2021.00087

[29] Goran Petrovic, Marko Ivankovic, Gordon Fraser, and Rene Just. 2022. Practical
Mutation Testing at Scale: A view from Google. IEEE Transactions on Software
Engineering 48, 10 (Oct. 2022), 3900–3912. https://doi.org/10.1109/TSE.2021.
3107634

[30] Goran Petrović, Marko Ivanković, Gordon Fraser, and René Just. 2023. Please �x
this mutant: How do developers resolve mutants surfaced during code review?.
In 2023 IEEE/ACM 45th International Conference on Software Engineering: Software
Engineering in Practice (ICSE-SEIP). IEEE, 150–161.

[31] Goran Petrovic, Marko Ivankovic, Bob Kurtz, Paul Ammann, and Rene Just.
2018. An Industrial Application of Mutation Testing: Lessons, Challenges, and
Research Directions. In 2018 IEEE International Conference on Software Testing,
Veri�cation and Validation Workshops (ICSTW). IEEE, Vasteras, 47–53. https:
//doi.org/10.1109/ICSTW.2018.00027

[32] David Schuler and Andreas Zeller. 2013. Covering and Uncover-
ing Equivalent Mutants. Software Testing, Veri�cation and Reliabil-
ity 23, 5 (2013), 353–374. https://doi.org/10.1002/stvr.1473 _eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/stvr.1473.

[33] Omer Tripp, Salvatore Guarnieri, Marco Pistoia, and Aleksandr Aravkin. 2014.
ALETHEIA: Improving the Usability of Static Security Analysis. In Proceedings
of the 2014 ACM SIGSAC Conference on Computer and Communications Security.
ACM, Scottsdale Arizona USA, 762–774. https://doi.org/10.1145/2660267.2660339

[34] Michele Tufano, Jason Kimko, Shiya Wang, Cody Watson, Gabriele Bavota, Mas-
similiano Di Penta, and Denys Poshyvanyk. 2020. DeepMutation: a neural
mutation tool. In Proceedings of the ACM/IEEE 42nd International Conference on
Software Engineering: Companion Proceedings. ACM, Seoul South Korea, 29–32.
https://doi.org/10.1145/3377812.3382146

[35] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and
Vijay Sundaresan. 2010. Soot: A Java bytecode optimization framework. In
CASCON First Decade High Impact Papers. 214–224.

[36] J. M. Voas. 1992. PIE: A Dynamic Failure-Based Technique. IEEE Transactions
on Software Engineering 18, 8 (Aug. 1992), 717–727. https://doi.org/10.1109/32.
153381 Num Pages: 11 Place: New York, United States Publisher: IEEE Computer
Society.

[37] Xiangjuan Yao, Mark Harman, and Yue Jia. 2014. A study of equivalent and
stubborn mutation operators using human analysis of equivalence. In Proceedings
of the 36th International Conference on Software Engineering. ACM, Hyderabad
India, 919–930. https://doi.org/10.1145/2568225.2568265

Received 2024-04-12; accepted 2024-07-03

665

https://doi.org/10.1109/ICSE.2005.1553583
https://doi.org/10.1109/ICSE.2005.1553583
https://apps.dtic.mil/sti/pdfs/ADA071795.pdf
https://apps.dtic.mil/sti/pdfs/ADA071795.pdf
https://doi.org/10.1109/ICSE-SEIP52600.2021.00036
https://pitest.org
https://doi.org/10.1109/ICSTW55395.2022.00039
https://doi.org/10.1109/ISSRE.2014.40
https://doi.org/10.1109/ICSTW.2009.37
https://doi.org/10.1109/ICSTW.2009.37
https://doi.org/10.1109/ICSE.2013.6606613
https://arxiv.org/abs/1303.2784
https://doi.org/10.1145/2635868.2635929
https://doi.org/10.1109/ASE.2011.6100138
https://doi.org/10.1145/3510003.3510187
https://doi.org/10.1145/3542946
https://doi.org/10.1109/TSE.2017.2684805
https://doi.org/10.1109/ICSTW.2016.41
https://doi.org/10.1109/ICSTW.2016.41
https://doi.org/10.6084/m9.figshare.26948143.v1
https://doi.org/10.6084/m9.figshare.26948143.v1
https://doi.org/10.1109/ICSTW.2019.00035
https://doi.org/10.1145/1134285.1134425
https://doi.org/10.4204/EPTCS.86.1
https://pdfs.semanticscholar.org/329d/2f8107679740395bac2cc0525f83adf33a20.pdf?_ga=2.31610622.1559687992.1581913553-1401888376.1581913553
https://pdfs.semanticscholar.org/329d/2f8107679740395bac2cc0525f83adf33a20.pdf?_ga=2.31610622.1559687992.1581913553-1401888376.1581913553
https://pdfs.semanticscholar.org/329d/2f8107679740395bac2cc0525f83adf33a20.pdf?_ga=2.31610622.1559687992.1581913553-1401888376.1581913553
https://doi.org/10.1109/ICSE.2015.103
https://doi.org/10.1109/ICSE.2015.103
https://doi.org/10.1109/ICSE43902.2021.00087
https://doi.org/10.1109/ICSE43902.2021.00087
https://doi.org/10.1109/TSE.2021.3107634
https://doi.org/10.1109/TSE.2021.3107634
https://doi.org/10.1109/ICSTW.2018.00027
https://doi.org/10.1109/ICSTW.2018.00027
https://doi.org/10.1002/stvr.1473
https://doi.org/10.1145/2660267.2660339
https://doi.org/10.1145/3377812.3382146
https://doi.org/10.1109/32.153381
https://doi.org/10.1109/32.153381
https://doi.org/10.1145/2568225.2568265

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Mutant Generation
	2.2 Equivalent Mutants
	2.3 Impact of Equivalent Mutants on Testing
	2.4 Equivalent Mutant Detection Techniques

	3 Data Set
	3.1 Subject Selection
	3.2 Mutant Generation

	4 Equivalent Mutants in the Wild
	4.1 RQ1: How common are equivalent mutants in the wild?
	4.2 RQ2: What types of equivalent mutants exist in the wild?

	5 EMS: Equivalent Mutant Suppression
	6 Evaluation
	6.1 RQ3: How effective is EMS compared to TCE?
	6.2 RQ4: What types of equivalent mutants do EMS and TCE find?
	6.3 RQ5: How efficient is EMS compared to TCE?

	7 Discussion
	7.1 Time per Detected Equivalent Mutant
	7.2 Undetected Equivalent Mutants
	7.3 A Fundamental Trade-off
	7.4 Generalizability of EMS
	7.5 Threats to Validity

	8 Conclusions
	References

