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Abstract
Mutation testing is an effective testing technique for improving
how well a test suite can detect small changes to a program under
test. This testing technique is seeing increased industry adoption.
This paper aims to study the use of mutation testing in an educa-
tional setting and understand students’ technical and conceptual
challenges in applying mutation testing concepts. We report on
two case studies of incorporating mutation testing into software
engineering curricula.

The Scaffolding Study explores the impact of using different
mutation analysis tools directly or indirectly via a uniform inter-
face provided by an educational infrastructure. We observe that
scaffolding (indirect tool use) improved the consistency of student
performance for those using the same mutation analysis tool on
the same code as well as helping students perform more effective
mutation testing.

The Visualization Study explores the impact of different forms
of output of a mutation analysis tool. Specifically, it assesses to
what extent visualizations support students in reasoning about
mutants and writing tests to detect them. We observe that like
scaffolding, visualizations helped students perform more effective
mutation testing, with lower-performing students seeing a boost
in particular.

We further explore challenges around automatic assessment of
mutation testing exercises. For example, we observe that even with
assignment scaffolding, 18-21% of student submissions required
manual modifications to successfully execute.
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1 Introduction
Software testing improves confidence in the correctness of a pro-
gram, with various approaches to measuring test quality. Mutation
analysis [41, 42] is one such approach seeing industry adoption
[4, 32, 37], indicating a need for software engineers to learn mu-
tation analysis and testing techniques. Software engineering and
computer science students face challenges learning new and com-
plex testing techniques [5, 14]. Hence, we seek to better understand
the challenges and infrastructure implications for students to com-
prehend and perform mutation testing in an educational setting.

The use of mutation analysis and testing in educational contexts
has been studied, including the development of a mutation testing
educational module [26] and a gamification teaching approach [13],
as well as using mutation analysis to obtain feedback about the
quality of test suites produced by students [9, 23, 38]. While these
studies provide valuable insights into facets of the use of mutation
analysis and testing in educational contexts, to our knowledge,
no prior work has investigated the advantages and drawbacks of
using different mutation analysis tools from the perspective of
both teachers and students. Identifying the challenges experienced
by students when they struggle to learn a new testing technique
and proposing pedagogical approaches for overcoming them is
necessary [5].

We focused on technical and conceptual challenges students
faced performing mutation testing in a classroom setting. We ob-
served while teaching mutation testing exercises that technical
challenges centered around difficulties configuring, running, and
interpreting output of different mutation analysis tools. Concep-
tual challenges centered around difficulty understanding concepts
relevant to mutation testing (e.g., state propagation). To address
these challenges, we investigated different uses of scaffolding (di-
rect vs. indirect use) of mutation analysis tools and visualization (as
opposed to a textual representation) of mutation analysis reports
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and assess the effectiveness, consistency, and quality of student-
produced test cases and short-answer responses.

The Scaffolding Study (Sec. 4) assesses to what extent mutation
tool scaffolding supports student learning. In the Direct Tool Use
Phase, students directly used different mutation analysis tools; in
the Scaffolding Phase, students indirectly used different mutation
analysis tools via a uniform interface in an educational infrastruc-
ture. Comparing the effectiveness and consistency of student sub-
missions between both phases, we observe that students had more
consistent performance with scaffolding. Students also had less
mutant detection overlap w.r.t. developer tests, which may be an
indication of a more accurate application of mutation testing.

The Visualization Study (Sec. 5) assesses to what extent addi-
tional visualization of mutation analysis outputs supports student
learning. In the Textual Reports Phase, students use textual re-
ports of mutation analysis output. In the Visual Reports Phase,
students additionally have access to visualizations of this output.
We observe that the visualizations boosted the accurate execution
of mutation testing goals for lower-performing students and that
students achieved similar mutation scores with less overlap w.r.t.
provided starter tests.

Considering both studies, we discuss challenges related to auto-
matic assessment (Sec. 6). We observe that even when provided a
common assignment infrastructure, approximately a fifth of student
submissions required manual modifications to be executable.

In summary, the main contributions of this work are:
• a study of student use of individual mutation analysis tools
vs. a scaffolded assignment infrastructure

• a study of the impact of textual vs. visual mutation analysis
reports on student performance and understanding

• identification of challenges around automated assessment
of mutation testing exercises

2 Background
There are several measures used to evaluate the quality of a test
suite. One common measure is code coverage, which assesses the
percentage of statements, conditions, etc. that are executed by a test
suite. While code coverage is a relatively cheap value to measure, a
test suite having high code coverage does not necessarily indicate
fault detection capability. For instance, a test suite which executes
every line in a program, but has no assertions would have 100% line
coverage but would not discover program faults other than those
related to program exit statuses.

Mutation analysis provides a stronger measure of the quality of
a test suite than code coverage [41, 42]. Mutation analysis makes
small changes, mutations, to a program to create many different
mutant programs. These changes are made by applying mutation
operators (e.g., changing an == to a !=). If a test suite can observe
the difference between the original program and a mutant (e.g., the
test suite passes on the original program and fails on the mutant),
that mutant is detected. Otherwise, the mutant is undetected. The
mutation score gives the percentage of detected over the total num-
ber of generated mutants. Mutants and mutation scores are coupled
to real faults and correlated with real fault detection [15]. It is pos-
sible for the original program and the mutant to be semantically
equivalent (e.g., removing a statement in dead code). Such a mutant
is called an equivalent mutant and is not detectable.

A mutant must infect state to be detectable. For instance, if the
condition a <= 0 is mutated to a <= -1, for the mutant to be
detected, an a is needed such that a <= 0 and a <= -1 have
different truth values (i.e. a == 0). However, state infection alone
is not sufficient for a mutant to be detected; there must also be
state propagation. The infected state must be propagated such that
the difference between the original and mutant programs can be
observed. For instance, if the previous condition is part of a larger
expression such as a <= 0 || b <= 0, a == 0 alone is not
sufficient to observe the mutant. The additional condition that b
<= 0 is false must also be met. This reasoning must be extended
through the rest of the program.

Mutation analysis provides a mutation score for a given test suite
and set of mutants (i.e. the goal is to get a measure of how good a
test suite is). Mutation testing is similar but is a process by which a
developer tries to write a test that detects an undetected mutant
(i.e. the goal is to add tests that detect mutants) [2, 22].

Amutant can be considered productive or unproductive [4, 31, 32].
A mutant is defined as productive if it is detectable and elicits an
effective test or if it is equivalent, but its analysis and resolution
improve code quality or knowledge [33]. Productiveness is a subjec-
tive measure as the effectiveness of a test, code quality, or improved
knowledge of code can vary by developer.

3 Experimental Setup
This section outlines the methodology common to both the Scaf-
folding Study and the Visualization Study. In particular, this section
describes the subject programs, mutation analysis tools, and mea-
sures of interest. Further aspects specific to each case study are
presented in their respective sections (Sec. 4 and Sec. 5).

Both case studies are organized into two phases: the first ob-
serves challenges around mutation testing exercises and serves as
a control; the second implements solutions for the observed chal-
lenges and repeats the same mutation testing exercise. Both studies
were performed in common educational settings, and all data used
was anonymized.

3.1 Subject Programs
Across the case studies, we use four subject programs (see Tab. 1).

Triangle is a self-contained Java program used for educational
purposes. It takes as input three integers representing the side
lengths of a triangle and outputs the classification of the triangle
(equilateral, scalene, isosceles, or invalid). The release of the Major
mutation framework [18, 19] includes the Triangle program as
an example. We used Triangle in our case studies because it is
a short program with an intuitive specification while still having
non-trivial control flow.

DateUtils is part of the Lang project and has utility functions
for using Java Calendar and Date objects. HelpFormatter is part
of the Cli project and is a formatter for help messages for command
line options. JsonWriter is part of the Gson project and has utility
functions for writing JSON to a stream. Lang, Cli, and Gson are
projects from Defects4J (v2.0.0), a popular benchmark in software
engineering research [20]. We used these specific classes in the
selected projects because they provide self-contained functionality
and are amenable to straightforward unit testing (e.g., no need for
mocking).
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Table 1: Selected subject programs.

Class Project LOC Defects4J Version

Triangle Triangle 52 NA
DateUtils Lang 990 Lang-53f
HelpFormatter Cli 1010 Cli-32f
JsonWriter Gson 659 Gson-15f

3.2 Mutation Analysis Tools
Across the case studies, we use four different state-of-the-art muta-
tion tools: Major [19, 21], PIT [8], Jumble [16], and Judy [25]. We
chose these tools because (1) there has been successful application
of these tools on real-world projects and (2) these tools differ across
multiple dimensions, such as level of detail in generated outputs
and mutant-generation approach (e.g., mutation of source vs. byte
code) [2].

We distinguish between direct use and scaffolding of mutation
analysis tools. Direct use refers to students using a tool directly
(i.e., downloading and installing the tool and running it according
to the tool documentation). Scaffolding refers to students using a
tool through an exercise infrastructure. These infrastructures are
detailed in each case study.

3.3 Measures of Interest
Across the case studies, we investigate student performance and
understanding of mutation testing.

3.3.1 Effectiveness and Consistency. We investigated students’ ef-
fectiveness and consistency on mutation testing exercises. Improv-
ing consistency of answers among students narrows the gap be-
tween the lower and higher performing students and eases grading
in a classroom setting. We consider the following measures:
Number of Tests Written is the number of tests that students
added to their given starter test suites. We expect more effective stu-
dents to write more tests with scaffolding because they can spend
more time writing tests than struggling with tool complexity. We
also expect more effective students to write fewer tests with visual-
ization because they will write more targeted tests (i.e. reduction
of “guess and check" strategies in favor of more strategic testing).
Line and Condition Coverage is the percentage of lines and
conditions executed by a test suite. We expect more effective stu-
dents to have higher line and condition coverage.
Mutation Score is the percentage of detected over generated
mutants for a given test suite. We expect more effective students to
have higher mutation scores.
DetectedMutants Overlap compares the proportion of mutants
that are detected by only student-written tests or only starter tests,
by both student-written and starter tests, or by neither. Reducing the
overlap between student-written tests and starter tests is indicative
of more strategic and targeted mutation testing. We expect more
effective students to have less overlap.

3.3.2 Quality of Rationale on Equivalent and Productive Mutants.
We additionally investigated students’ comprehension and under-
standing of mutation testing. In addition to writing tests, students
provided rationale about mutant equivalence and productiveness.

Table 2: Number of submissions for each class and tool for
the Scaffolding Study.

Class Tool Number of Submissions

Direct Scaffolding

DateUtils Judy 2 4
Jumble 4 NA
Major 2 5
PIT 3 5

HelpFormatter Judy 2 3
Jumble 3 NA
Major 3 4
PIT 2 4

JsonWriter Judy 3 5
Jumble 3 NA
Major 3 5
PIT 3 4

Two authors individually classified each submission. The two au-
thors discussed where classifications differed. Each submission was
classified as:

• None: No justification provided or no classification.
• Unclear: Cannot understand the rationale or rationale does
not show signs of understanding the concept.

• Generic: Too generic; no meaningful application of con-
cepts.

• Sufficient: Some meaningful application of concepts (even
if fairly minimal).

4 Scaffolding
The Scaffolding Study focuses on addressing technical challenges
students have with using mutation analysis tools.

4.1 Experimental Setup
The Scaffolding Study was performed over two consecutive editions
of an in-person Software Testing Master’s course, where students
are primarily recent graduates. Theoretical classes are used to for-
mally present the teaching topics, while lab classes are used to carry
out small projects and explore different testing tools. Additionally,
there is an end-of-semester lab project.

For the lab project, students are asked to use mutation testing to
detect mutants that are undetected by developer tests for a given
project(s). The high-level learning goals of this project are to learn
about systematic unit testing and reason about test quality, using
coverage and mutation analysis criteria.

We kept the core material of the mutation testing lab project
the same over the two course editions but provided a scaffolded
mutation testing environment in the second edition to assess its
impact on observed technical challenges. To summarize the two
course editions:
Direct Tool Use Phase Students directly used different mutation
analysis tools for the lab project. Students were divided into 16
groups of two to three students and 1 group of one student. We
assigned one tool with two Defects4J classes under test to each
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Figure 1: Survey responses for the Direct Tool Use Phase.

group with two or more students and one tool with one class to
the group with a single student. Tool and class assignments were
random. This resulted in 17 total groups and 33 total class-tool
submissions for this phase (Tab. 2).

Scaffolding Phase Students indirectly used the mutation anal-
ysis tools through a provided infrastructure for the lab project.
Students worked individually and each student was randomly as-
signed one tool and class. We analyzed 39 class-tool submissions
from this phase (Tab. 2).

4.2 Direct Tool Use Phase
We observed a few technical issues that students struggled with
while working on the lab project during the Direct Tool Use Phase.

4.2.1 Usability of Mutation Analysis Tools for Students. Students
were asked to answer a questionnaire we designed about the usabil-
ity of their assigned mutation analysis tool. The Likert questions
and results are summarized in Fig. 1. Judy was the tool that gener-
ated the most dissatisfaction among students. The most significant
difficulties using Judy were related to implementing and running
tests and interpreting outputs.

At the end of the questionnaire, students were given the oppor-
tunity to provide additional comments about the tool they used.
We highlight a few themes for each tool:

DateUtils HelpFormatter JsonWriter

Line C
overage

M
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Figure 2: Student reported and expected test qualitymeasures
for the provided starter tests for the Direct Tool Use Phase.

• Judy: missing and unclear information in reports; difficulty
understanding how to use the tool and outputs; lack of doc-
umentation; long execution time.

• PIT: missing and unclear information in reports; difficult
installation and configuration process.

• Jumble: missing and unclear information in reports; lack of
documentation.

• Major: missing detailed information in reports.
The observed variability in tool usability creates unwanted in-

equalities in an educational setting where some students may have
more difficult tool assignments than others. From the instructor
perspective, teaching how to use multiple different tools is difficult,
especially given varying quality of tool documentation. Thus in-
structors may spendmore time helping students overcome technical
issues than clarifying the concepts for mutation testing.

4.2.2 Analysis Results Reported by Students for Given Starter Tests.
Fig. 2 reports the expected values for line coverage and mutation
score that should be obtained by executing the provided starter
tests. The starter tests are developer-written tests that come with
the Defects4J projects. Since PIT can be configured to generate
different mutants, we considered all three configurations: Default,
Stronger, and All mutation operators.

Fig. 2 also shows the values students reported after running the
starter tests1. Students were more accurate for the more traditional
test quality measure line coverage than mutation score. The dis-
cordance between the expected and student reported values for
mutation score can occur from either differences in reporting of the
number of generated mutants or the number of mutants detected
by the starter tests2.

There are two explanations suggested by the inconsistency in the
students’ reported results for the given starter tests. One is that dif-
ferent students are reporting the correct results for varying settings
in their computing environments (e.g., which mutation operators
to apply). These non-uniform environments make both manual
and automatic assessment more difficult due to the complexity in

1We use the student reported numbers for detected and generated mutants to calculate
the mutation score.
2Note that because mutation score is the number of detected mutants over the number
of generated mutants, class-tool pairs with a smaller denominator will emphasize
differences in mutation score more than those with larger denominators (e.g., being
five mutants off from the expected when there are only 10 total mutants will affect the
mutation score more than if there are 2000 mutants).
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Figure 3: UML Component Diagram showing the architec-
tural design of the Defects4J extension.

replicating the different settings used by students. The alternative
explanation is that the students reported the incorrect results for
their environment’s configuration. Distinguishing between varying
settings and erroneous answers for inconsistent results is difficult,
making deciphering and assessing student work difficult.

4.3 Scaffolding Phase
Addressing the observed challenges in the Direct Tool Use Phase,
we introduced a scaffolded environment in the Scaffolding Phase
that aims to improve documentation and readability of generated
reports while reducing mutation tool installation, configuration,
and learning effort by providing a common environment to interact
with each mutation tool.

Defects4J already provides an abstraction over the Major mu-
tation analysis tool; users indirectly invoke Major through a com-
mand line interface. Thus, we extended Defects4J by adding two
additional tools, PIT and Judy, to create a shared environment for
all three tools. As an additional benefit, Defects4J already includes
the software under test for the exercise. Jumble was excluded from
this integration process because it does not generate the output
artifacts necessary for automatic post-processing for the metrics in
which we are interested.

The diagram in Fig. 3 describes the architecture of the Defects4J
extension (D4JE). The extension provides a Common Mutation API
with a shared set of commands for all the integrated mutation tools.
This command line user interface abstracts away details of the
syntax and output format of the individual mutation tools. The
Adapter component binds the Common Mutation API to each of the
Mutation APIs provided by the integrated mutation tools.
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Figure 4: Number of tests written by students as well as line
coverage, condition coverage, and mutation scores of student
and starter tests in the Scaffolding Study. For the mutation
score for PIT, we show only the measures from the Stronger
configuration. Note that the y scales for each measure differ.

4.4 Comparison and Discussion of Results
We analyzed submissions from the Direct Tool Use Phase and the
Scaffolding Phase to assess student effectiveness, consistency, and
quality of submissions.

4.4.1 Effectiveness and Consistency. We ran the student test suites
from both the Direct Tool Use Phase and the Scaffolding Phase
using the D4JE infrastructure3 for each submissions’ class-tool as-
signment. Since D4JE does not support Jumble, student submissions
from the Direct Tool Use Phase that were assigned Jumble are ex-
cluded from this analysis. However, these Jumble submissions are
included in the qualitative analysis in Sec. 4.4.2. Because students
assigned to use PIT in the Direct Tool Use Phase used different
PIT configurations (i.e. Defaults, Stronger, and All), we ran all
PIT submissions for both phases against all PIT configurations.
Students assigned PIT for the Scaffolding Phase used the Stronger
configuration, which D4JE set.

Fig. 4 shows dot plots for the number of tests written by stu-
dents, the line and condition coverage of student and developer
tests, and the mutation score of student and developer tests4. Values
are binned by 1/30 of the range of the data for each class-tool pair.
We generally observe mixed results for different class-tool pairs.
For students assigned to work with Judy, we observe an unexpected
pattern, especially for DateUtils and HelpFormatter where students
in the Scaffolding Phase wrote fewer tests but achieved similar
or higher mutation scores. There may be an inverse relationship
between the number of tests written and coverage and mutation
scores, possibly from more systematic testing vs. “guess-and-check”
strategies (see Sec. 3.3.1 for more discussion on expectations), but
we leave investigation of this to future work with more data points.

3Minor modifications were made to the infrastructure to support gathering data.
4We compared all configurations of PIT as described above. We did not observe notably
different patterns between Default and Stronger. For All, we see more students
with higher scores in the Direct Tool Use Phase than for other configurations. This
is not unexpected as students in this phase may have targeted mutants from the All
configuration that would not have been presented to the students in Scaffolding Phase.



FSE Companion ’25, June 23–28, 2025, Trondheim, Norway Potter et al.

DateUtils HelpFormatter JsonWriter

D
irect

Scaffolding

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0

5

10

15

0

5

10

15

Percentage of Mutants

Su
bm

is
si

on
s

student detected XOR developer detected student detected AND developer detected undetected

Figure 5: Detected mutants overlap in the Scaffolding Study.
Less mutant detection overlap (more blue) is better.

We do generally observe more clustering of measures in the Scaf-
folding Phase, where more students reach the same or similar line
coverage, mutation score, etc. This clustering indicates more con-
sistency in student performance.

We further investigate student effectiveness and consistency by
measuring the detected mutants overlap as described in Sec. 3.3.1.
We calculated these measures by running the test suites with Major,
regardless of the assigned tool. We chose to use one tool to provide
a common set of mutants for each project to compare. We chose
Major since it generates a kill matrix which provides information
about which tests kill which mutants. We observe from Fig. 5 that
generally students in the Scaffolding Phase had less overlap of mu-
tants detected by both student and developer tests than in the Direct
Tool Use Phase. These observations provide a signal that the stu-
dents in the Scaffolding Phase performed more effective mutation
testing, i.e., they understood better the detected and undetected
mutants resulting from the execution of the starter tests.

4.4.2 Quality of Rationale on Equivalent and Productive Mutants.
While scaffolding may not directly support understanding of equiv-
alent and productive mutants, reducing technical difficulties may
allow students to focus on learning and applying these concepts.

For each mutant analyzed, students were instructed to indicate
and justify whether or not the mutant is equivalent. We observe
an improvement in the reasoning about equivalence between the
Direct Tool Use Phase and the Scaffolding Phase.

Students in the Direct Tool Use Phase were not asked to provide
a justification for mutants they indicated were productive, so we
cannot compare the quality of students’ rationale. However, we
do observe that most students in the Scaffolding Phase provided
acceptable rationale for productive mutants.

5 Visualization
The Visualization Study focuses on addressing conceptual chal-
lenges students have with understanding mutation testing.

5.1 Experimental Setup
The Visualization Study involved two editions of the same under-
graduate software engineering course. Additionally, this case study
considers a similar graduate course as a reference point.

In the undergraduate course, students are typically majoring in
computer science and are in the latter-half of their degree progres-
sion. The course is centered around a group project and includes

in-class exercises focused on different software engineering top-
ics, including software testing. Students typically work on in-class
exercises in pairs, but may work individually. In-class exercises
are scheduled during class time to allow students to work in pairs
and to interact with the course staff. Questions and discussions of
solutions are highly encouraged to prevent students from getting
stuck and to encourage reflection on initial and refined solutions.

The graduate course’s focus is on advanced topics in software
engineering. The course focuses on static and dynamic program
analyses, including software testing. The students are predomi-
nantly professional Master’s students with software engineering
related jobs who complete their degree as part-time students. The
course focuses on in-class exercises, similar in structure to that of
the undergraduate course.

Both courses involve an in-class exercise that covers mutation
testing. The graduate exercise is more involved, with one part very
similar to the undergraduate exercise. Students are given a small,
self-contained program (Triangle). Students indirectly use the Ma-
jor mutation framework. The code for the exercise is packaged such
that students do not have to install the mutation testing software
on their own; students simply clone a repository and run given
scripts and build targets. Keeping the tools and program fixed aims
to help students focus more on comprehension of mutation testing
rather than struggling with technical issues such as tool installation.
Students only need to add tests to a given test suite with the goal of
reaching mutation adequacy (i.e. detect all non-equivalent mutants)
for the Triangle program.

We kept the core material of the mutation testing exercise the
same over two editions of the undergraduate course but provided
additional tooling in the second edition to assess its impact on
observed conceptual challenges. Additionally, the graduate course
serves as a performance baseline with experienced software engi-
neers. To summarize the three course editions:
Baseline (graduate) In a previous exercise, students were given
a test suite with one example test for the Triangle program and
asked to add tests to satisfy code coverage criteria. In a follow-up
mutation testing exercise, students were asked to add tests to this
test suite to satisfy mutation adequacy. We analyzed 24 submissions
from this edition.
Textual Reports Phase (undergraduate) For the mutation test-
ing exercise, students were provided a test suite that satisfied state-
ment coverage and were asked to add tests to the given test suite to
satisfy mutation adequacy. We analyzed 33 submissions from this
course edition5.
Visual Reports Phase (undergraduate) Students used the same
setup and instructions as for the Textual Reports Phase, with the
addition of tooling that aims to improve students’ understanding
of and reasoning about mutants. We analyzed 43 submissions from
this course edition.

5.2 Textual Reports Phase
While we observed students working on the mutation testing ex-
ercise in the Textual Reports Phase, we noticed a few common
concepts that students were distracted by or struggled with:

5One submission was discarded because the test source code was not submitted.
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Figure 6: An example mutant from the Visualization Study:
the mutant changes a 0 to a -1 in an if-statement condition.

Figure 7: Textual and AST diff of an example mutant from
the Visual Reports Phase.Truth Tables

So we are looking for a, b, c such that:
a <= 0 → T,  b <= 0 → F,  c <= 0 → F,  a <= -1 → F

                                                    OR
a <= 0 → F,  b <= 0 → F,  c <= 0 → F,  a <= -1 → T

Goal: Find assignments for a, b, c that result in a different return value (INVALID, …).Figure 8: Example truth tables from the Visual Reports Phase,
including annotations (shown in red) and an explanation
(shown below the tables) of how to interpret the tables which
was provided in tool documentation presented to students.

• Operator precedence and associativity: Mutating opera-
tors can create less common combinations of operators that
may be tricky to reason about. While the operator prece-
dence and associativity is non-ambiguous, students were not
always confident with combinations of operators with which
they are less familiar. Being unsure of operator precedence
and associativity can make it difficult to reason about state
infection and propagation, thus making it more difficult to
write tests that detect a mutant.

• State infection and propagation: Students sometimes had
difficulty understanding why a test they wrote did not detect
a targeted mutant due to challenges related to reasoning
about state propagation. This included when, for the same
input, the original and mutant programs have different exe-
cution paths but return the same value.

Figure 9: Tests that cover an example mutant with coverage
reports from the Visual Reports Phase (view cropped).

5.3 Visual Reports Phase
To address the observed challenges in the Textual Reports Phase,
we introduced additional tooling in the Visual Reports Phase. To
reduce distraction from and improve comprehension of the core
learning goals around mutation testing for the exercise, we created
a visualization for the otherwise textual mutation analysis report.

The mutant visualization report is a web-based tool that aims
to help students visualize and reason about mutants. This tool is
not dependent on the mutation framework being used or a stu-
dent’s setup such as their preferred IDE. Students simply run a
provided script which generates the report which can be viewed
in a web-browser. The report consists of two main subsections for
each undetected mutant: static information about the mutant and
dynamic information about the tests that covered the mutant. For
example, if a student is trying to write a test that detects the mutant
shown in Fig. 6, they will see the following information to help
overcome the observed challenges described in section 5.2:

• Operator precedence and associativity: Fig. 7 shows the tex-
tual and AST diff for a selected mutant. Color highlighting
draws attention to the mutation. The diffs emphasize the
precedence and associativity of the operators around a given
mutation. This is static information about operator prece-
dence and associativity for a selected mutant.

• State infection and propagation: Fig. 8 shows the truth ta-
bles for a selected mutant. The same color highlighting used
for the textual and AST diffs is used to help associate related
information. Highlighted rows extending across both tables
give truth assignments that will result in both state infec-
tion and propagation to the parent expression. Yellow cells
are common truth assignments between both tables. This is
static information about state infection and propagation for
a selected mutant. The top of Fig. 9 shows the test inputs and
outputs that cover, but do not detect, the selected mutant.
The bottom of Fig. 9 shows the Cobertura code coverage
reports [7] for the selected test on the original program
(left) and the mutant program (right). The code coverage
reports give both line coverage and condition coverage in-
formation. This is dynamic information about state infection
and propagation for a selected mutant.

5.3.1 Experience Using the Mutant Visualization. Students were
asked to optionally complete an exit survey we designed asking
about the overall experience of using the visualization tool and
the usefulness of individual features. Based on interactions with
students and the exit survey, we made the following observations.
First, students reported that analysis and visualization speed was
the predominant factor for their learning experience. While the
visualization itself may be useful, it needs to have no noticeable
latency between adding tests and viewing the reports to allow the
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Figure 10: Number of tests written by students and the num-
ber of undetected mutants (lower is better) in the Visual-
ization Study. Since all submissions were using the same
mutants on the same subject, we report on the number of
undetected mutants instead of the mutation score.

students to focus on the exercise. Second, we observed that even
with the provided assignment scaffolding, some students struggled
setting up the exercise or made unexpected changes that broke
the setup. Moving the assignment to be run entirely through a
web-hosted GUI may allow students to focus more on mutation
testing concepts instead of struggling with using the command line.
Third, students sometimes looked at stale reports, which caused
confusion. This was due either to students not understanding the
need to regenerate the visualization after adding tests or a bug
that was only found and fixed after the in-class work time. An
automatic update on test file save could solve this problem. Fourth,
we observed that students felt they had information overload with
the reports. Allowing students to show/hide subsections of the
visualization may ease this frustration. Additional exploration is
needed to understand what information is most valuable to present
as well as the most effective way to present the information.

5.4 Comparison and Discussion of Results
We again compared the Textual Reports Phase and the Visual Re-
ports Phase to one another and to the Baseline to assess student
effectiveness, consistency, and quality of submissions.

5.4.1 Effectiveness and Consistency. Fig. 10 shows the results for
the number of tests written and the effectiveness of these tests in
terms of the number of undetected mutants. All submissions except
two achieved 100% line and condition coverage (one in the Baseline
and one in the Textual Reports Phase).

We make three key observations on the effectiveness and con-
sistency of student tests. First, the median number of tests is the
same for Visual Reports Phase and the Textual Reports Phase (32.0).
Second, the tests produced in the Textual Reports Phase and the
Visual Reports Phase show overall similar effectiveness (median
of 9.0 undetected mutants for both). Third, the variance for code
coverage and the number of undetected mutants (and hence also
the mutation score) is lower in the Visual Reports Phase. The stan-
dard deviations between the Textual Reports Phase and the Visual
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Figure 11: Detected mutants overlap in the Visualization
Study. Less mutant detection overlap (more blue) is better.

Reports Phase, respectively, for line coverage were 0.03 and 0.00, for
condition coverage were 0.02 and 0.00, and for undetected mutants
were 11.36 and 4.60. Additionally, the minimum code coverage is
higher (0.84 vs. 1.00 for line coverage and 0.88 vs. 1.00 for condi-
tion coverage) and the maximum number of undetected mutants
is lower (68 vs. 30) in the Visual Reports Phase versus the Textual
Reports Phase, respectively, suggesting that the visualization may
have particularly helped lower-performing students.

As in Sec. 4.4, we further investigate student effectiveness and
consistency by calculating the detected mutants overlap. We ob-
serve from Fig. 11 that generally students in the Visual Reports
Phase had less overlap of mutants detected by both student and
starter tests than in the Textual Reports Phase. The median mu-
tation score of the student tests without considering the starter
tests, which is calculated by removing tests that are equivalent
to the starter tests and calculating the mutation score from the
remaining tests, is similar in Visual Reports Phase (0.53) versus
Textual Reports Phase (0.52). We can conclude that the students
in the Visual Reports Phase performed more effective mutation
testing by achieving similar mutation scores while understanding
and targeting mutants not detected by the starter tests.

While the submissions of the Baseline students still outperform
those of the Visual Reports Phase for the number of undetected
mutants, the results suggest that the provided visualization helped
close the gap between the Textual Reports Phase and the Baseline.

5.4.2 Quality of Rationale on Equivalent and Productive Mutants.
In addition to writing tests, students were asked two conceptual
questions: (1) to provide a proof for each mutant they believed
to be equivalent and (2) to explain which (if any) mutants were
unproductive. We qualitatively analyzed student responses to these
questions, using the classification described in section 3.3.2.
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We do not observe notable differences in performance across
the two phases: the quality of comments for the Baseline is slightly
better than the quality for the Textual Reports Phase, which is in
turn slightly better than the quality for the Visual Reports Phase.
While the visualizations may have made students more effective at
mutation testing, we do not observe evidence that they improved
conceptual understanding of equivalent and productive mutants.
Further visual support specifically targeted at these concepts may
improve the quality of student comments.

5.5 Complexity Challenge
As explored in Sec. 4, alleviating unnecessary complexity can help
students focus and perform better. However, not all complexity is
unnecessary. One of the goals of using the Triangle program for
the Visualization Study was to provide a small program where each
line of code can be fully reasoned about. This allows instructors
to know ground truth information about the program such as the
exact number of equivalent mutants and reduces the amount of code
students need to understand. However, this simplification may hurt
student learning. For instance, we observed students more focused
on getting to the ground truth number of equivalent mutants than
trying to really practice mutation testing, where in non-academic
settings (and even in non-trivial academic settings) the ground truth
number of equivalent mutants is not know [24, 32]. Additionally, the
simplicity of the Triangle programmakes it difficult for students to
learn to reason about the productivity of mutants because with code
that is so simple, reasoning about a mutant is less likely to advance
code knowledge. Finding the correct balance of complexity and
simplicity for educational mutation testing exercises will require
further exploration, but exercise scaffolding and visual reports show
promise in this direction.

6 Automatic Assessment Challenges
The test cases developed by the students in both the Scaffolding
Study and the Visualization Study were executed to check their
effectiveness and consistency. We observed that some submissions
required manual changes to both the tests and infrastructures to be
executed because they caused compile time or run time errors, thus
affecting the execution and analysis of the tests. Tab. 3 summarizes
the issues affecting the student test suites of both case studies; since
some test suites had more than one issue, some submissions are
reflected in multiple rows. Specifically, we observed the following
issues that we manually corrected to automatically and consistently
analyze all student submissions:

• Failing test cases: Student submissions that included tests
which failed on unmutated code were corrected with the
assumption that the unmutated is correct. Where fixes were
non-trivial, tests were commented out. For the Scaffolding
Study, D4JE was set to ignore test failures, so submissions
that were assigned to Major are not included in this category.

• Unexpected format/configuration: Student submissions
that did not follow the expected format or configuration
were modified.

• Compiler errors: Student submissions that caused compiler
errors were fixed to compile and run.

• Missing assertions: This issue was only relevant for the
Visualization Study where an assignment question asked
students to comment out a particular assertEquals and
observe changes. Submissions that did not revert the com-
mented out code were changed to do so.

These issues indicate areas that would cause friction with auto-
grader use or otherwise having instructors run student test suites,
even when students were provided with assignment infrastructure.
These indicate areas for possible clarifications of instructions or
additional improvements to infrastructure.

7 Limitations and Threats to Validity
Both studies presented in this work have limitations derived from
being performed in common classroom settings. Many factors were
not controlled between course editions, including but not limited to
different instructors, general programming proficiency within and
between different student populations, modifications to assignment
instructions, and group work composition (e.g., students working
in groups vs. individually for the Scaffolding Study). Thus, we
refrain from making any strong claims about the generalizability
or statistical significance of our observations, rather we report our
observations and future directions for exploration.

8 Related Work
Mutation analysis and testing has been used in educational settings
both as a way to support other learning goals (e.g., as an assessment
measure of test suite quality) and as a primary learning goal (i.e.
teaching modern testing strategies).

8.1 Using Mutation Analysis to Support Other
Learning Goals

Mutation analysis has seen limited use in the context of student
assessment and feedback [14]. Issues limiting its adoption include
high computational costs [17]. These costs can delay feedback and
thus degrade learning outcomes when used for automated assess-
ment and feedback [3, 10]. In particular, [23] observed that these
problems hindered research about the potential pedagogical ben-
efits of mutation analysis. Despite these problems, several experi-
ences of introducing mutation analysis for assessment and feedback
of student test suite strength can be found in the literature.

Mutation analysis has seen adoption as an assessment measure
of the quality of student tests. [38] used automatically generated
mutants for this purpose while [39] used a set of buggy versions of
the application under test. Mutation analysis provides a stronger
measure of student test suite quality than code coverage measures
alone [1]. In an empirical evaluation, [30] found a strong corre-
lation between the mutation score from automatically generated
mutants and manually-seeded faults. This experiment also found
a moderately strong correlation between the mutation score and
buggy student implementations, indicating that the mutation score
from automatically generated mutants is a reasonable assessment
measure of student test suite quality. Similarly, [6] also found that
generated mutants are coupled to student-written program faults
and that the mutation score is a reasonable measure of student test
suite quality.
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Table 3: Number of issues with student test suites that disrupt automated assessment. Some submissions had multiple issues.

Issue Number of Occurrences

Scaffolding Study Visualization Study

Direct Scaffolding Baseline Textual Visual

Failing test cases 3 2 1 2 4
Unexpected format or configuration 6 6 0 3 0
Compiler errors 1 2 0 0 2
Missing assertions 0 0 2 4 4

Submissions that needed modification 9 / 33 (0.27) 8 / 39 (0.21) 3 / 24 (0.12) 6 / 33 (0.18) 9 / 43 (0.21)

Mutation analysis has also seen adoption as a feedback measure
of test suite quality for students. [9] ran an experiment for third year
undergraduate computer science students in a Software Verification
and Validation course. First, the students designed unit test cases
without the guidance of any measurable testing criteria, such as
statement or mutation coverage. Then, the students ran a mutation
analysis tool on their test suite and observed the mutation score
and used this feedback to design more effective test cases. Before
and after running the mutation analysis, students were asked to
assess how good the test suite was. After viewing the mutation
analysis reports, student perception of the fault detection ability
of their tests more closely aligned with the actual fault detection
ability than before viewing the mutation analysis reports.

In comparing code coverage to mutation analysis as a quality
metric for test suites, [27] found that students using mutation anal-
ysis wrote both stronger test suites and had higher quality code,
as well as showed more evidence of following incremental testing
practices.

Mutation analysis has also been used to support code comprehen-
sion. In [28, 29], first year undergraduate students used a mutation
analysis tool to help reason about code; the goal was to understand
the code functionality by trying various program inputs.When com-
paring students who used the mutation analysis tool with those
who just had access to a compiler, students showed signs of having
a better understanding of code functionality using the mutant tool.

Rather than using mutation analysis as a way to assess and
provide feedback about student test suite quality or to support code
comprehension, our work focuses on challenges and support with
teaching mutation analysis and testing as a core learning goal.

8.2 Teaching Mutation Analysis and Testing as a
Primary Learning Goal

Efforts to teach mutation testing as a key learning goal in software
engineering and computer science courses has also been explored,
including the development of a learning module [26].

[40] presented an educational mutation testing framework which
uses a GUI on top of Defects4J to support use of different mutation
testing tools through a common interface. We complement this
work by presenting another mutation testing scaffolding tool and
provide an evaluation of use of this tool in a classroom setting.

Code Defenders is a web-based game used for a gamification-
based approach to teaching mutation testing [34, 35]. Code De-
fenders incorporates both test design and mutant generation by

students. Some players act as “Attackers” and inject mutants in
source code, while other players act as “Defenders” and try to de-
sign a test suite able to detect all the injected mutants. Empirical
evaluations in a controlled study and a crowdsourcing scenario
demonstrated stronger test suites and mutants created through
game-play than those created by automated tools (i.e. Randoop and
EvoSuite for test suites and Major for mutant generation) and that
writing tests was considered more enjoyable in the game-based
approach than outside this environment [36]. Code Defenders has
additionally been used in educational settings [12, 13] with stu-
dents enjoying the game and showing improvement in test suite
and mutant quality throughout a semester [11].

Our work complements these explorations of teaching mutation
analysis and testing as a primary learning goal in computer science
and software engineering courses.

9 Conclusion
Through two case studies, we explore challenges to integrating
mutation testing into software engineering curricula. We leave to
future work further exploration on improving the application of
mutant equivalency and productivity concepts. Additionally, we
observe challenges to automatic assessment of student tests, even
when assignment scaffolding is used, indicating another area to
improve support for student and instructor use of mutation analysis
tools and practicing mutation testing.

10 Data Availability
The study replication package is available at https://doi.org/10.
6084/m9.figshare.28273163. This includes the experimental setup
materials, anonymized consolidated datasets of analysis measures,
and the analysis scripts used to generate the figures in this paper.
We do not include the individual student submissions to preserve
student privacy.
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